Use a calculator to find the cube root of positive or negative numbers. Given a number x<span>, the cube root of </span>x<span> is a number </span>a<span> such that </span><span>a3 = x</span><span>. If </span>x<span> positive </span>a<span> will be positive, if </span>x<span> is negative </span>a<span> will be negative. Cube roots is a specialized form of our common </span>radicals calculator<span>.
</span>Example Cube Roots:<span>The 3rd root of 64, or 64 radical 3, or the cube root of 64 is written as \( \sqrt[3]{64} = 4 \).The 3rd root of -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span><span>
</span>This was not copied from a website or someone else. This was from my last year report.
<span>
f -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span>
Answer:
c.
Step-by-step explanation:
Answer:
$0.025x² . . . where x is a number of percentage points
Step-by-step explanation:
The multiplier for semi-annual compounding will be ...
(1 + x/2)² = 1 + x + x²/4
The multiplier for annual compounding will be ...
1 + x
The multiplier for semiannual compounding is greater by ...
(1 + x + x²/4) - (1 + x) = x²/4
Maria's interest will be greater by $1000×(x²/4) = $250x², where x is a decimal fraction.
If x is a percent value, as in x = 6 when x percent = 6%, then the difference amount is ...
$250·(x/100)² = $0.025x² . . . where x is a number of percentage points
_____
<u>Example</u>:
For x percent = 6%, the difference in interest earned on $1000 for one year is $0.025×6² = $0.90.
Answer:
(0,-4)
Step-by-step explanation:
This is a classic example of a 45-45-90 triangle: it's a right triangle (one angle of 90) & two other sides of the same length, which means two angles of the same length (and 45 is the only number that will work). With a 45-45-90 triangle, the lengths of the legs are easy to determine:
45-45-90
1-1-sqrt2
Where the hypotenuse corresponds to sqrt2.
Now, your hypotenuse is 10.
To figure out what each leg is, divide 10/sqrt2 (because sqrt2/sqrt2 = 1, which is a leg length in the explanation above).
Problem: you can't divide by radicals. So, we'll have to rationalize the denominator:
(10•sqrt2)/(sqrt2•sqrt2)
This can be rewritten:
10sqrt2/sqrt(2•2)
=10sqrt2/sqrt4
=10sqrt2/2
=5sqrt2
Hope this helps!!