1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
3 years ago
8

Can square root of 32 be simplified

Mathematics
2 answers:
Bogdan [553]3 years ago
5 0
Well let's check

√32 = √8*4 = 4√2

Yes it can
erastovalidia [21]3 years ago
3 0
Hey!

First, we have to break 32 into its primes.
32=2^5
=\sqrt{2^5}
Since we don't want an odd number, we can split it into two.
=\sqrt{2^4\cdot \:2}
=\sqrt{2}\sqrt{2^4}
Since we want to remove one of the square roots, we have to do something like this: \sqrt{2^4}=2^{\frac{4}{2}}=2^2
We would be left with,
=2^2\sqrt{2}
Simplify the exponent.
=4\sqrt{2}
This tells us that the square root of 32 can be simplified.

Thanks!
-TetraFish
You might be interested in
Solve 3k^2=8k+8,using completing the square method ​
GenaCL600 [577]

Answer:

3k2=8k+8 

Two solutions were found :

 k =(8-√160)/6=(4-2√ 10 )/3= -0.775

 k =(8+√160)/6=(4+2√ 10 )/3= 3.442

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "k2"   was replaced by   "k^2". 

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

                     3*k^2-(8*k+8)=0 

Step by step solution :

Step  1  :

Equation at the end of step  1  :

3k2 - (8k + 8) = 0

Step  2  :

Trying to factor by splitting the middle term

 2.1     Factoring  3k2-8k-8 

The first term is,  3k2  its coefficient is  3 .

The middle term is,  -8k  its coefficient is  -8 .

The last term, "the constant", is  -8 

Step-1 : Multiply the coefficient of the first term by the constant   3 • -8 = -24 

Step-2 : Find two factors of  -24  whose sum equals the coefficient of the middle term, which is   -8 .

     -24   +   1   =   -23     -12   +   2   =   -10     -8   +   3   =   -5     -6   +   4   =   -2     -4   +   6   =   2     -3   +   8   =   5     -2   +   12   =   10     -1   +   24   =   23

Observation : No two such factors can be found !! 

Conclusion : Trinomial can not be factored

Equation at the end of step  2  :

3k2 - 8k - 8 = 0

Step  3  :

Parabola, Finding the Vertex :

 3.1      Find the Vertex of   y = 3k2-8k-8

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 3 , is positive (greater than zero). 

 Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 For any parabola,Ak2+Bk+C,the  k -coordinate of the vertex is given by  -B/(2A) . In our case the  k  coordinate is   1.3333  

 Plugging into the parabola formula   1.3333  for  k  we can calculate the  y -coordinate : 

  y = 3.0 * 1.33 * 1.33 - 8.0 * 1.33 - 8.0 

or   y = -13.333

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 3k2-8k-8

Axis of Symmetry (dashed)  {k}={ 1.33} 

Vertex at  {k,y} = { 1.33,-13.33}  

 k -Intercepts (Roots) :

Root 1 at  {k,y} = {-0.77, 0.00} 

Root 2 at  {k,y} = { 3.44, 0.00} 

Solve Quadratic Equation by Completing The Square

 3.2     Solving   3k2-8k-8 = 0 by Completing The Square .

 Divide both sides of the equation by  3  to have 1 as the coefficient of the first term :

   k2-(8/3)k-(8/3) = 0

Add  8/3  to both side of the equation : 

   k2-(8/3)k = 8/3

Now the clever bit: Take the coefficient of  k , which is  8/3 , divide by two, giving  4/3 , and finally square it giving  16/9 

Add  16/9  to both sides of the equation :

  On the right hand side we have :

   8/3  +  16/9   The common denominator of the two fractions is  9   Adding  (24/9)+(16/9)  gives  40/9 

  So adding to both sides we finally get :

   k2-(8/3)k+(16/9) = 40/9

Adding  16/9  has completed the left hand side into a perfect square :

   k2-(8/3)k+(16/9)  =

   (k-(4/3)) • (k-(4/3))  =

  (k-(4/3))2 

Things which are equal to the same thing are also equal to one another. Since

   k2-(8/3)k+(16/9) = 40/9 and

   k2-(8/3)k+(16/9) = (k-(4/3))2 

then, according to the law of transitivity,

   (k-(4/3))2 = 40/9

We'll refer to this Equation as  Eq. #3.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

   (k-(4/3))2   is

   (k-(4/3))2/2 =

  (k-(4/3))1 =

   k-(4/3)

Now, applying the Square Root Principle to  Eq. #3.2.1  we get:

   k-(4/3) = √ 40/9 

Add  4/3  to both sides to obtain:

   k = 4/3 + √ 40/9 

Since a square root has two values, one positive and the other negative

   k2 - (8/3)k - (8/3) = 0

   has two solutions:

  k = 4/3 + √ 40/9 

   or

  k = 4/3 - √ 40/9 

Note that  √ 40/9 can be written as

  √ 40  / √ 9   which is √ 40  / 3 

Solve Quadratic Equation using the Quadratic Formula

 3.3     Solving    3k2-8k-8 = 0 by the Quadratic Formula .

 According to the Quadratic Formula,  k  , the solution for   Ak2+Bk+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

            - B  ±  √ B2-4AC

  k =   ————————

                      2A 

  In our case,  A   =     3

                      B   =    -8

                      C   =   -8 

Accordingly,  B2  -  4AC   =

                     64 - (-96) =

                     160

Applying the quadratic formula :

               8 ± √ 160 

   k  =    —————

                    6

Can  √ 160 be simplified ?

Yes!   The prime factorization of  160   is

   2•2•2•2•2•5  

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a squarei.e. second root).

√ 160   =  √ 2•2•2•2•2•5   =2•2•√ 10   =

                ±  4 • √ 10 

  √ 10   , rounded to 4 decimal digits, is   3.1623

 So now we are looking at:

           k  =  ( 8 ± 4 •  3.162 ) / 6

Two real solutions:

 k =(8+√160)/6=(4+2√ 10 )/3= 3.442 

or:

 k =(8-√160)/6=(4-2√ 10 )/3= -0.775 

Two solutions were found :

 k =(8-√160)/6=(4-2√ 10 )/3= -0.775

 k =(8+√160)/6=(4+2√ 10 )/3= 3.442

5 0
3 years ago
Read 2 more answers
Frank is going to plant x vegetable seeds in one garden and 3x+2 vegetable seeds in another. How many seeds is frank going to pl
LekaFEV [45]

Answer:yeet yeet skeet skeet

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
3 pound pork lion can be cut into 10 pork shots of equal weight how many ounces in each pork shop
iren2701 [21]
4.8 ounces in each. Hope this helps!
5 0
3 years ago
Read 2 more answers
Using technology or other resources, research the average distance that each planet is from the sun (in kilometers). Once you ha
alexira [117]

Answer:

Planet Distance from Sun (in Km) Distance in scientific notation

Mercury 57,909,000 Km        5.7909 X 10^3

Earth  150.33 Million Km    1.50.33 X 10^6

Mars  2.10.06 Million Km  2.1006 X 10^6

Jupiter  768.26 Million Km      7.6826 X 10^6

Neptune 4.4763 Billion Km     4.4763 X 10^9

Uranus  2.5957 Billion Km         2.5957 X 10^9

Saturn  1.4936 Billion Km                  1.4936 X 10^9

Venus  107.95 Million Km                 1.0795 X 10^6

Step-by-step explanation:

4 0
3 years ago
The graph shows the amount Tina earns, w, before taxes after working h hours. How much does tina earn per hour?
liubo4ka [24]

Answer:

$8 per hour

Step-by-step explanation:

hope i was able to help , take care be safe and have a good day

7 0
2 years ago
Other questions:
  • Choose the correct function rule.
    5·1 answer
  • What is the value of 23 divided by three when rounded to the teeth
    7·1 answer
  • Determine the value of y in the equation: -5y-9=-(y-1) (show all work)
    15·1 answer
  • How much money would i have if i had 13 quarters 13 dimes 13 nickels and 13 pennies?
    8·2 answers
  • What is it like to live under a Carpet
    9·2 answers
  • In a normal distribution, what is true about the mean, median and the mode?​
    14·1 answer
  • Draw a diagram. Write the Segment Addition Postulate for the points described. Then solve for missing length.
    12·1 answer
  • What are some good note for Notes for Median and mean
    6·1 answer
  • Multiple choice geometry help trig ?!!!!!!!!
    12·1 answer
  • Question 7 of 10
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!