Answer:
Boy has the greater linear velocity.
Explanation:
The liner velocity in a rotatory system is defined as:
v = ω×r
where,
v is the liner velocity
ω is the angular velocity
r is the radius.
The boy is near the edge and the girl is closer to the center. The scenario is shown in the image below.
As, mentioned in question, they are turning out at a constant rate, so the angular velocities of both the boy and the girl are same.
<u>From the above inference, it can be concluded that now the linear velocity only depends on the radius of the disc. The linear velocity is directly proportional to the distance from the center.</u>
Thus, the greater the distance from the center, the greater the value of liner velocity.
<u>From the question also and from the image also the distance of the boy from the center is greater than the distance of the girl from the center. </u><u>That's why boy has greater linear velocity. </u>
Answer:
The final velocity of the car is 36 m/s.
Explanation:
Given;
initial velocity of the car, u = 20 m/s
time of the car acceleration, t = 4 s
acceleration of the car, a = 4 m/s²
the final velocity of the car is calculated as;
v = u + at
where;
v is the final velocity of the car
v = 20 + (4 x 4)
v = 36 m/s
Therefore, the final velocity of the car is 36 m/s.
i just took the test on edg enuity it was B.The mass of the rocket decreases as fuel is burned, so the acceleration increases.
Answer:
Explanation:
wave length of light λ = 623 x 10⁻⁹ m .
Distance of screen D = 76.5 x 10⁻² m
width of slit = d
Distance on the screen between the second order minimum and the central maximum = 2 λ D / d
1.11 x 10⁻² = (2 x 623 x 10⁻⁹ x 76.5 x 10⁻² )/ d
d = ( 2 x 623 x 10⁻⁹ x 76.5 x 10⁻²) / 1.11 x 10⁻²
= 85872.97 x 10⁻⁹
= 85.87297 x 10⁻⁶
= 85.87 μm
width a of the slit is = 85.87 μm
<span>Answer:
Using 1/f = 1/d' + 1/d ...(where d' object distance and d is image distance)
1/4 = 1/7 + 1/d
1/4 - 1/7 = 1/d
3/28 = 1/d
d = 28/3
d = 9.33 cm</span>