We can use 3rd equation of motion to find the velocity of the stone just before it strikes the ground.
Height = S = 318 meters
Acceleration = a= 9.8 m/s²
Initial velocity = u = 0
Final velocity = v = ?
According to the 3rd equation of motion:
2aS = v² - u²
2(9.8)(318)=v²
v²=6232.8
⇒
v = 78.95 m/s
So, the velocity rounded of to nearest integer will be 79 meters per second.
Thus, C option is the correct answer
Answer:
c
Explanation:
5.3" (and any subsequent words) was ignored because we limit queries to 32 words.
Energy in a spring:
E = 0.5 * k * x²
k spring constant = 800 n/m
x stretch of the spring = 5 cm = 0.05 m
E = 0.5 * 800 * 0.05² = 1
Explanation:
Given that,
Distance 1, r = 100 m
Intensity, 
If distance 2, r' = 25 m
We need to find the intensity and the intensity level at 25 meters. Intensity and a distance r is given by :
.........(1)
Let I' is the intensity at r'. So,
............(2)
From equation (1) and (2) :



Intensity level is given by :
, 

dB = 32.96 dB
Hence, this is the required solution.
Answer:
Not possible
Explanation:
= longitudinal modulus of elasticity = 35 Gpa
= transverse modulus of elasticity = 5.17 Gpa
= Epoxy modulus of elasticity = 3.4 Gpa
= Volume fraction of fibre (longitudinal)
= Volume fraction of fibre (transvers)
= Modulus of elasticity of aramid fibers = 131 Gpa
Longitudinal modulus of elasticity is given by

Transverse modulus of elasticity is given by


Hence, it is not possible to produce a continuous and oriented aramid fiber.