1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
11

At what frequency should a 200-turn, flat coil of cross sectional area of 300 cm2 be rotated in a uniform 30-mT magnetic field t

o have a maximum value of the induced emf equal to 8.0 V
Physics
1 answer:
Alexxandr [17]3 years ago
7 0

Answer:

The frequency of the coil is 7.07 Hz

Explanation:

Given;

number of turns of the coil, 200 turn

cross sectional area of the coil, A = 300 cm² = 0.03 m²

magnitude of the magnetic field, B = 30 mT = 0.03 T

Maximum value of the induced emf, E = 8 V

The maximum induced emf in the coil is given by;

E = NBAω

Where;

ω is angular frequency = 2πf

E = NBA(2πf)

f = E / 2πNBA

f = (8) / (2π x 200 x 0.03 x 0.03)

f = 7.07 Hz

Therefore, the frequency of the coil is 7.07 Hz

You might be interested in
Where are the life forms of the biosphere located
bulgar [2K]
<span>The life forms of the biosphere are located within Earth's surface.</span>
7 0
3 years ago
Which of the following advancements could science and technology reasonably contribute to society?
Alexxx [7]

Answer:            

idk search it on google chrome

Explanation:

7 0
3 years ago
Read 2 more answers
A 1400 kg car is moving at 33.8 m/s when a force is applied the opposite direction of the car's motion. The car slows down to 21
zubka84 [21]

Solve for acceleration:

<em>a</em> = (21.4 m/s - 33.8 m/s) / (4.7 s)

<em>a</em> ≈ -2.6 m/s²

Solve for force:

<em>F</em> = (1400 kg) <em>a</em> ≈ -3700 N

The minus sign tells you the force points in the opposite direction of the car's motion. Its magnitude is always positive, so <em>F</em> = 3700 N.

3 0
3 years ago
the positive particle has a charge of 31.7 mC and the particles are 2.80 mm apart, what is the electric field at point A located
vichka [17]

Answer:

the electric field at point A is

E = 5.5 ×10¹³N/C(-x direction)

Explanation:

given

electrostatics constant k = 9.0×10⁹

charge q = 31.7mC= 31.7×10⁻³C

distance r = 2.80mm

distance from midpoint to point A = 2.00mm

attached is the diagram of the solution, describing the position of the charge

note x = r/2, where x is the distance from midpoint of r to the particle

using Pythagoras theorem as in the attachment, x = 2.44mm= 2.44×10⁻³m

the electric field at point A is given as

vector <em>E </em>= 2E×cos θ( -x direction)

recall E =kq/x²

where k is the electrostatics constant = 1/4πε₀

where ε₀ is permittivity of free space

therefore using E =2{kq/x²}cosθ

∴cosθ = adjacent/hypotenuse

cosθ=1.40/2.44

E =2 {(9.0×10⁹ × 31.7×10⁻³) ÷ (2.44×10⁻³)²}×(1.40/2.44)(-x)

E=2{4.79×10¹³}×(0.574)(-x)

E = 2×2.75 ×10¹³N/C(-x direction)

Vector <em>E= </em>5.5 ×10¹³N/C(-x direction)

3 0
3 years ago
An electron with speed 2.45 x 10^7 m/s is traveling parallel to a uniform electric field of magnitude 1.18 x 10^4N/C . How much
cupoosta [38]

Answer:

time will elapse before it return to  its staring point is 23.6 ns

Explanation:

given data

speed u = 2.45 × 10^{7} m/s

uniform electric field E = 1.18 × 10^{4} N/C

to find out

How much time will elapse before it returns to its starting point

solution

we find acceleration first by electrostatic force that is

F = Eq

here

F = ma by newton law

so

ma = Eq

here m is mass , a is acceleration and E is uniform electric field and q is charge of electron

so

put here all value

9.11 × 10^{-31} kg ×a = 1.18 × 10^{4} × 1.602 × 10^{-19}

a = 20.75 × 10^{14} m/s²

so acceleration is 20.75 × 10^{14} m/s²

and

time required by electron before come rest is

use equation of motion

v = u + at

here v is zero and u is speed given and t is time so put all value

2.45 × 10^{7} = 0 + 20.75 × 10^{14} (t)

t = 11.80 × 10^{-9} s

so time will elapse before it return to  its staring point is

time = 2t

time = 2 ×11.80 × 10^{-9}

time is 23.6 × 10^{-9} s

time will elapse before it return to  its staring point is 23.6 ns

7 0
3 years ago
Other questions:
  • If Vx = 7.00 units and Vy = -7.60 units, determine the magnitude of V⃗ .
    12·1 answer
  • Determine the heat energy required to vaporize 13.9 grams of liquid water at 100° C. O 2,006 cal O 47.8 cal O 7,506 cal O 24.9 c
    12·1 answer
  • Select the correct answer from each drop-down menu.
    9·2 answers
  • An internal combustion engine has an efficiency of 22.3%. This engine is used to deliver 6.25x 40 J of work to drive the motion
    5·1 answer
  • Plz help with this<br> And thanks
    14·2 answers
  • A force acts on a body of mass 13 kg initially at restThe force acts for 10 seconds, and once it quits, the body covers 60 m in
    11·2 answers
  • Ke...
    10·1 answer
  • A 500 kg cart is rolling to the right at 1.3 m/s. a 60 kg man is standing on the right end of the cart. what is the speed of the
    8·1 answer
  • A merry-go-round rotates at the rate of 0.17 rev/s with an 79 kg man standing at a point 1.6 m from the axis of rotation.
    13·1 answer
  • A ball on the end of a string is revolving at a uniform rate in a vertical circle of radius 97.7 cm. If its speed is 3.74 m/s, a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!