Answer:
<h3>true</h3>
Explanation:
<h3>hope it helps you ❤️</h3><h3>happy to help</h3>
Answer:
Hence the pressure is 
Explanation:
Given data
Q=1500 J system gains heat
ΔV=- 0.010 m^3 there is a decrease in volume
ΔU= 4500 J internal energy decrease
We know work done is
W= Q- ΔU
=1500-4500= -3000 J
The change in the volume at constant pressure is
ΔV= W/P
there fore P = W/ΔV= -3000/-0.01= 3×10^5
Hence the pressure is 
Pretty sure it is weather :))
Answer:
L = 0 m
Therefore, the cricket was 0m off the ground when it became Moe’s lunch.
Explanation:
Let L represent Moe's height during the leap.
Moe's velocity v at any point in time during the leap is;
v = dL/dt = u - gt .......1
Where;
u = it's initial speed
g = acceleration due to gravity on Mars
t = time
The determine how far the cricket was off the ground when it became Moe’s lunch.
We need to integrate equation 1 with respect to t
L = ∫dL/dt = ∫( u - gt)
L = ut - 0.5gt^2 + L₀
Where;
L₀ = Moe's initial height = 0
u = 105m/s
t = 56 s
g = 3.75 m/s^2
Substituting the values, we have;
L = (105×56) -(0.5×3.75×56^2) + 0
L = 0 m
Therefore, the cricket was 0m off the ground when it became Moe’s lunch.
Answer:
Frquency=3,994Hz
Explanation:
Tension =967N
Density of string (μ)=0.023g/cm
Length of the stretched spring=308cm
Fundamental frequency for nth harmonic :
Fn=n/2L(√T/μ)
Substituting the given values to find the frequency :
f1=1/2(308cm) *(0.01m/1cm)[(√967N)/(0.023g/cm)(0.1kg)/(0.1kg/m)/(1g/cm)]
=6.16m[(√967N)/0.0023kg/m)]
=3,994.20Hz
Approximately,
The frequency will be =3,994Hz