Answer:
yes you are totally right
Complete question :
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supply storage area of the lunar outpost where gravity is 1.63m/s/s can only support 1 x 10 over 5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost?
Answer:
601000 N
Explanation:
Given that :
Acceleration due to gravity at lunar outpost = 1.6m/s²
Supported Weight of supplies = 1 * 10^5 N
Acceleration due to gravity on the earth surface = 9.8m/s²
Maximum weight of supplies as measured on EARTH :
Ratio of earth gravity to lunar post gravity:
(Earth gravity / Lunar post gravity) ;
(9.8 / 1.63) = 6.01
Hence, maximum weight of supplies as measured on EARTH should be :
6.01 * (1 × 10^5)
6.01 × 10^5
= 601000 N
Answer:
The Richter scale measures the largest wiggle (amplitude) on the recording, but other magnitude scales measure different parts of the earthquake. The USGS currently reports earthquake magnitudes using the Moment Magnitude scale, though many other magnitudes are calculated for research and comparison purposes.
Physical changes: melting, evaporating, and condensation. This is a physical change.
Answer:
86.4 hrs
Explanation:
The amount of bacteria is initially 1
It doubles every 24 hrs.
After first 24 hrs, the amount = 2
After next 24 hrs = 4
After next 24 hrs = 8
After next 24 hrs = 16
After next 24 hrs = 32
After next 24 hrs = 64
After next 24 hrs = 128
After next 24 hrs = 256
Total time taken to reach 256 = 24 x 8 = 192 hrs
For the bacteria culture on the rocket that travels at a speed of 0.893c relative to the earth, this time is contracted by the relationship
t = t'(1 - ¥^2)^0.5
Where t is the contracted time =?
t' is the time on earth
¥ = v/c
Where v is the speed of the rocket
c is the speed of light
since v = 0.893c
¥ = 0.893
Substituting, we have
t = 192 x (1 - 0.893^2)^0.5
t = 192 x 0.2025^0.5
t = 192 x 0.45 = 86.4 hrs