Answer:
upthrust
Explanation:
i think it does not sink in water because of the force pulling it upwards
Answer:
Explanation:
The vertical component of the initial velocities are
If we ignore air resistance, and let g = -9.81 m/s2. The the time it takes for the projectiles to travel, vertically speaking, can be calculated in the following motion equation
So the ratio of the times of the flights is
The Moment of Inertia of the Disc is represented by . (Correct answer: A)
Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:
(1)
Where:
- - Moment of inertia of the Disk.
- - Moment of inertia of the Hole.
Then, this formula is expanded as follows:
(1b)
Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole ():
And the resulting equation is:
The moment of inertia of the Disc is represented by . (Correct answer: A)
Please see this question related to Moments of Inertia: brainly.com/question/15246709
Answer:
Explanation:
a) Force of friction = μ R where μ is coefficient of kinetic friction and R is reaction force
R = mg where m is mass of the block
Force of friction F = μ x mg
= .173 x 12.2 x 9.8
= 20.68 N
b ) Only force of friction is acting on the body so
deceleration = force / mass = 20.68 / 12.2 = 1.7 m /s²
acceleration = - 1.7 m /s²
c )
v² = u² - 2 a s
v = 0 , u = 3.9 m /s
a = 1.7 m /s
0 = 3.9² - 2 x 1.7 x s
s = 4.47 m