Answer:
See the attachment below for the graphics in part (a)
The initial velocity for this time interval is u = 61ft/sec and the final velocity is 0m/s because the car comes to a stop.
This a constant acceleration motion considering the given time interview over which the brakes are applied. So the equals for constant acceleration motion apply here.
Explanation:
The full solution can be found in the attachment below.
Thank you for reading. I hope this post is helpful to you.
The total resistance of an electric circuit with resistors widener series in the sum of the individual resistances:
Each resistor in a series circuit has a same amount of current flowing through it.
Each resistor in a parallel circuit has the same for voltage of the source applied to it.
When was this is are connected in parallel, the supply current is equal to the sum of the current through each resistor. In other words the currents in the branches of a parallel circuit add up to the supply current. When resistors are connected in parallel they have the same potential differences across them.
The best conclusion that can be drawn is that D) A current does not flow in the wire
Answer:
<h2>17.1 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
3800 g = 3.8 kg
We have
force = 3.8 × 4.5
We have the final answer as
<h3>17.1 N</h3>
Hope this helps you
Answer:
Zero
Explanation:
As force acting on the body is equal to the product of mass and acceleration.
Acceleration is equal to rate of change in velocity.
Here velocity is constant so acceleration is zero.
It means the net force acting on the vehicle is zero.