1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
13

Three laws of mechanics and

Physics
1 answer:
Vedmedyk [2.9K]3 years ago
7 0

Answer:

In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction.

You might be interested in
How are electromagnetic waves different from all other waves
Verdich [7]

Answer:

Electromagnetic waves differ from mechanical waves in that they do not require a medium to propagate. This means that electromagnetic waves can travel not only through air and solid materials, but also through the vacuum of space.

Explanation:

6 0
3 years ago
Question 4 of 10
kiruha [24]
B hey what do u know i took that test to
5 0
2 years ago
If a certain gas occupies a volume of 12 l when the applied pressure is 6.0 atm , find the pressure when the gas occupies a volu
dolphi86 [110]
From Boyle's law, the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature. 
Therefore; P1V1 =P2V2; where PV is a constant
hence; 12 × 6 = 3× p2
           p2 = 72/3
                = 24 atm
Therefore; the new pressure will be 24 atm
5 0
3 years ago
The six statements below represent Newton's three laws of motion and Kepler's three laws of planetary motion. Match each stateme
mote1985 [20]

Answer:

1. Force = mass x acceleration - Newton

2. A planet moves faster in the part of its orbit nearer the Sun and slower when farther from the Sun, sweeping out  equal areas in equal times - Kepler

3. For any force, there is an equal and opposite reaction force - Newton .

4. An object moves at constant velocity if there is no net force acting upon it - Newton

5. The orbit of each planet about the Sun is an ellipse with the Sun at one focus  - Kepler.

6. More distant planets orbit the Sun at slower average speeds, obeying the precise mathematical relationship p2-a3 - Kepler.

Explanation:

The three laws of planetary motion formulated by Johannes Kepler or Kepler's laws of planetary motion:

  1. The first law states that the planets move around the Sun in an elliptical orbit with the Sun at one of the foci.
  2. The second law states that the line segment joining a planet to the Sun sweeps out equal areas in equal time.
  3. The third law states that the square of the orbital period (p) of a planet is directly proportional to the cube of the mean distance (a) from the Sun (or semi-major axis of its orbit) i.e., p² is proportional to a³.

The three laws of motion formulated by Sir Isaac Newton or Newton's laws of motion:

  1. The first law, also known as the law of inertia states that an object at rest or moves at a constant velocity will remain at rest or keep moving at a constant velocity unless it is acted upon by a force.
  2. The second law states that the total force (F) applied on an object is directly related to the acceleration (a) of that object produced by the applied force and the mass (m) of the object, i.e., F = ma (assuming the mass m is constant).
  3. The third law, also known as the law of action and reaction states that when an object exerts a force on another object, then the latter exerts a force equal in magnitude and opposite in direction on the former object i.e., for every action, there is an equal and opposite reaction. The example includes the recoiling of a gun when it fires a bullet forward.
5 0
3 years ago
If the net force on a block is zero
amm1812

If the net force on a block is zero, the block will move at constant velocity

Explanation:

We can answer this question by applying Newton's second law of motion, which states that the net force on an object is equal to the product between its mass and its acceleration:

\sum F = ma (1)

where

\sum F is the net force on the object

m is its mass

a is its acceleration

In this problem, we have a block, and the net force on it is zero:

\sum F = 0

According to eq.(1), this also implies that

a=0

So, the acceleration of the block is zero.

However, acceleration is the rate of change of velocity of a body:

a=\frac{\Delta v}{\Delta t}

where \Delta v is the change in velocity in a time of \Delta t. Since the acceleration is zero, this means that \Delta v=0, and therefore the velocity of the object is constant.

Learn more about Newton's second law:

brainly.com/question/3820012

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • A 3-m-high, 7-m-wide rectangular gate is hinged at the top edge and is restrained by a fixed ridge. Determine the hydrostatic fo
    9·1 answer
  • What direction does the medium vibrate
    6·2 answers
  • A thin conducting square plate 1.0 m on the side is given a charge of-2.0 x 10-6 c. A proton is placed 1.0 en above the center o
    7·1 answer
  • Elements that typically give up electrons
    12·1 answer
  • Suppose a log’s mass is 5 kg. After burning, the mass of the ash is 1 kg. What can you predict has happened to the other 4 kg?
    13·1 answer
  • Hii can someone please doo this! 50 pointss.
    7·1 answer
  • How long would it take a leopard, running at an average speed of 20 m/s to travel 500 m?
    10·1 answer
  • A radio station tower was built in two sections. From a point 87 feet from the base of the tower, the angle of elevation of the
    6·1 answer
  • What is KiloWatt unit in simple words??<br> Explain.......
    12·1 answer
  • Good morning! Can someone please answer this, ill give you brainliest and you will earn 50 points.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!