Answer:
True. mark me as Brilliant
Answer:
T= 4.24sec
Explanation:
We are going to use the formula below to calculate.

Where T is period
L is length of rod
g is acceleration due to gravity =
From the problem, the rod is pivoted at 1/4L which means that three quarter of the rod was used for the oscillation. lets call this

= 4.4625m
thus
T= 4.24sec
The so-called "velocity-time" graph is actually a "speed-time" graph. At any point
on it, the 'x'-coordinate is a time, and the 'y'-coordinate is the speed at that time.
'Velocity' is a speed AND a direction. Without a direction, you do not have a velocity,
and these graphs never show the direction of the motion. It seems to me that it would be
pretty tough to draw a graph that shows the direction of motion at every instant of time,
so my take is that you'll never see a true "velocity-time" graph.
At best, it would need a second line on it, whose 'y'-coordinate referred to a second
axis, calibrated in angle and representing the 'bearing' or 'heading' of the motion at
each instant. The graph of uniform circular motion, for example, would have a straight
horizontal line for speed, and a 'sawtooth' wave for direction.
To solve this problem, we use the Law of Universal Gravitation:
F = Gm1m2/d^2
where m1 and m2 are two objects. In this case, earth and man. d is the distance between the objects. Lastly, G is the gravitational constant. Since the mass of the earth and man are constant, this is lumped up with G into k. The equation would be:
F = k/d^2
k = Fd^2

The radius of earth, d1, is equal to 6.371E+6 m. Thus, d2 = 2d1
(8E+2)(d1)^2 = F2(2d1)^2
(8E+2)(d1)^2 = 4F2(d1)^2
(8E+2)=4F2
F2 = 200 Newtons