A lightbulb carries more current immediately after it is turned on and the glow of the metal filament is increasing; option A.
<h3>What is current?</h3>
Current refers to the flow of electric charges typically electrons.
Current flowing through a metallic material decreases with increase in temperature of the material.
This is because the resistance of the metal increases with increase in temperature.
Therefore, for a light bulb, the current flow through it will be maximum when it is just turned on because the temperature, and hence the resistance of the filament is at its lowest.
In conclusion, current flow decreases with increase in resistance.
Learn more about current and resistance at: brainly.com/question/24858512
#SPJ4
To solve this problem we must consider the expressions of Stefan Boltzmann's law for which the rate of change of the radiation of energy H from a surface must be

Where
A = Surface area
e = Emissivity that characterizes the emitting properties of the surface
= Universal constant called the Stefan-Boltzmann constant 
T = Absolute temperature
The total heat loss would be then





Therefore the net rate of heat loss from the body by radiation is 155.29J
Answer:
(a) 
(b) 
Explanation:
Parameter given:
Electric field, E = 
(a) Electric force is given (in terms of electric field) as a product of electric charge and electric field.
Mathematically:

Electric charge, q, of an electron = 

(b) This electrostatic force causes the electron to accelerate with an equivalent force:
F = -ma
where m = mass of an electron
a = acceleration of electron
(Note: the force is negative cos the direction of the force is opposite the direction of the electron)
Therefore:

Mass, m, of an electron = 
=> 
The acceleration of the electron is 
You would convert from grams to
moles by using the molar mass of the substance. The answer is letter B. for
example, the molar mass Carbon dioxide is 44.01 g/mol. It means that for 1 mole
of carbon dioxide, it contains 44.01 grams of Carbon dioxide.
Answer:
16. c
17. d
Explanation:
16. Newton’s third law states that a force will always have an opposite but equal force as a reaction, so every force comes as a pair of action-reaction forces. For example, if you push on a book, the book also pushes on you.
17. If 1cm represents 15N, then 5cm must represent 15N*5=75N.