Answer: The correct answer is "the speed of the wave becomes four times".
Explanation:
The relation between the speed, frequency and the wavelength is as follows:
v=f\lambda
Here, v is the speed of the wave, f is the frequency and \lambda is the wavelength.
The speed of the sound wave is directly proportional to the frequency.
In the given problem, if the speed of the sound wave is increased four times then the speed of the sound becomes four times.
Therefore, the speed of the sound wave becomes four times.
Answer:
q₁ = + 1.25 nC
Explanation:
Theory of electrical forces
Because the particle q₃ is close to two other electrically charged particles, it will experience two electrical forces and the solution of the problem is of a vector nature.
Known data
q₃=5 nC
q₂=- 3 nC
d₁₃= 2 cm
d₂₃ = 4 cm
Graphic attached
The directions of the individual forces exerted by q1 and q₂ on q₃ are shown in the attached figure.
For the net force on q3 to be zero F₁₃ and F₂₃ must have the same magnitude and opposite direction, So, the charge q₁ must be positive(q₁+).
The force (F₁₃) of q₁ on q₃ is repulsive because the charges have equal signs ,then. F₁₃ is directed to the left (-x).
The force (F₂₃) of q₂ on q₃ is attractive because the charges have opposite signs. F₂₃ is directed to the right (+x)
Calculation of q1
F₁₃ = F₂₃

We divide by (k * q3) on both sides of the equation



q₁ = + 1.25 nC
Answer:

Explanation:
As we know that moment of force is given as

now we have


now from above formula we have

here we know that

so we have


Answer:
45 degrees
Explanation:
The textbooks say that the maximum range for projectile motion (with no air resistance) is 45 degrees.
Answer:
Explanation:
velocity=frequency*wavelength
velocity = 2.99*10^8 m/s
frequency = ?
wavelength = 3.012*10^-12
2.99*10^8m/s = (f)(3.012*10^-12)
f=9.58*10^19 Hertz