Answer:
1. ∀ y ∈ Z such that ∃ x ∈ Z, ¬R (x + y)
2. ∃ x ∈ Z, ∀ y ∈ Z such that ¬R(x + y)
Step-by-step explanation:
If we negate a quantified statement, first we negate all the quantifiers in the statement from left to right, ( keeping the same order ) then we negative the statement,
Here, the given statement,
1. ∃y ∈Z such that ∀x ∈Z, R (x + y)
By the above definition,
Negation of this statement is ∀ y ∈ Z such that ∃ x ∈ Z, ¬R (x + y),
2. Similarly,
The negation of statement ∀x ∈Z, ∃y∈Z such that R(x + y),
∃ x ∈ Z, ∀ y ∈ Z such that ¬R(x + y)
Peter, to find the perimeter you have to add all sides up.
The square root of 30 in its simplest form is 5.5 ( I think)
Answer:
33
Step-by-step explanation:
Most of the time a number only has the least common multiple of that number multiplied by 11.
It’s 32 because 4/5ths of 40 is 32