Answer:
e. UDP-glucose pyrophosphorylase catalyzes the reaction of glucose-I-phosphate and UTP to UDP-glucose and PPi
a. Pyrophosphatase converts PPi and water into two Pi
b. Glycogen synthase adds a glucose unit from UDP-glucose to glycogen, producing a larger glycogen molecule and UDP
Explanation:
Glycogen synthesis or glycogenesis is the process of synthesis of glycogen molecules from glucose molecules in living organisms. Glycogen is a polysaccharide storage form of glucose and helps to store excess glucose in the body form use when required by the body.
The synthesis of glycogen involves sugar nucleotides. Sugar nucleotides are compounds in which a sugar molecule is attached to a nucleotide through phosphate ester bond, resulting in the activation of the sugar molecule. The sugar nucleotides then are used as substrates for the polymerization of the monosaccharide sugars into disaccharides, oligosaccharides and polysaccharides.
In the synthesis of glycogen, glucose-6-phosphate from phosphorylation of free glucose by hexokinase is first isomerized to glucose-1-phosphate by phosphoglucomutase.
Glucose-1-phosphate is then converted to UDP-glucose by its reaction with UTP catalyse by UDP-glucose pyrophosphorylase. The reaction is favoured by the rapid hydrolysis of PPi produced to two molecules of inorganic phosphate by the enzyme pyrophosphatase.
Glycogen synthase then adds a glucose unit from UDP-glucose to a growing chain of glycogen, producing a larger glycogen molecule and free UDP.
Answer : The retention time is, 20 min
Explanation :
Retention time : It is defined as the amount of time a compound spends on the column after it has been injected.
Formula of retention time is:

Given:
Distance from injection point to center of peaks = 10 cm
Chart recorded speed = 0.5 cm/min
Now put all the given values in the above formula, we get:

Retention time = 20 min
Thus, the retention time is, 20 min
Answer:
d) increases
Explanation:
Benzene is an aromatic hydrocarbon which is obtained from the destructive distillation of coal. It is a colourless volatile liquid with a sweet smell. It boils ar 80° C (353 K) and freezes at 5°C (2278 K). It is insoluble in water but mixes in all proportions with ethanol, ethoxyethane and methylbenzene. The reason which benzene is insoluble in water is that benzene is a non-polar compound and water is polar, meanwhile only "like dissolves like". So, when the benzene molecule is placed in water. There will be distortion and disturbance between the benzene molecule and the water. Thus, the particle of each molecule will be distant from each other. This state results to change in the entropy of the system as the entropy of the system increases.
The lowest value of the henry's law for methane gas (CH₄) will be obtained with H₂O as the solvent and a temperature of 349 K.
The lowest value of the henry's law for methane gas (CH₄) will be obtained with H₂O as the solvent and a temperature of 349 K.
Henry's law: This law states that at a constant temperature, the amount of a gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas that in equilibrium with that liquid.
Mathematically it can be written as:

So, for the methane gas , lowest value of the henry's law obtained at 349 K and with H₂O as the solvent.