Aluminum oxide produced : = 79.152 g
<h3>Further explanation</h3>
Given
46.5g of Al
165.37g of MnO
Required
Aluminum oxide produced
Solution
Reaction
2 Al (s) + 3 MnO (s) → 3 Mn (s) + Al₂O₃ (s)
mol = mass : Ar
mol = 46.5 : 27
mol = 1.722
mol = 165.37 : 71
mol = 2.329
mol : coefficient ratio Al : MnO = 1.722/2 : 2.329/3 = 0.861 : 0.776
MnO as a limiting reactant(smaller ratio)
So mol Al₂O₃ based on MnO as a limiting reactant
From equation , mol Al₂O₃ :
= 1/3 x mol MnO
= 1/3 x 2.329
= 0.776
Mass Al₂O₃ (MW=102 g/mol) :
= 0.776 x 102
= 79.152 g
Ba²⁺ + 2Cl⁻ + 2H⁺ + SO₄²⁻ = BaSO₄ (precipitate) + 2H⁺ + 2Cl⁻
Ba²⁺ + SO₄²⁻ = BaSO₄
Answer:
9.36
Explanation:
Sodium formate is the conjugate base of formic acid.
Also,
for sodium formate is
Given that:
of formic acid =
And,
So,
Concentration = 0.35 M
HCOONa ⇒ Na⁺ + HCOO⁻
Consider the ICE take for the formate ion as:
HCOO⁻ + H₂O ⇄ HCOOH + OH⁻
At t=0 0.35 - -
At t =equilibrium (0.35-x) x x
The expression for dissociation constant of sodium formate is:
Solving for x, we get:
x = 0.44×10⁻⁵ M
pOH = -log[OH⁻] = -log(0.44×10⁻⁵) = 4.64
pH + pOH = 14
So,
<u>pH = 14 - 4.64 = 9.36</u>
<span> mass of glucose = 0.055 *165 = 9.075 g
vol of methyl alc = 0.185 * 1.87 = 0.346 L = 346 ml
% NaCl ( m/v ) = mass NaCl * 100/ vol of soln
or Vol of Soln = mass NaCl / % NaCl (m/v)
= 32.1 * 100 / 6 = 535 ml the total vol of soln</span>
Answer:
3.14 grams of ammonium thiocyanate must be used to react completely with 6.5 g barium hydroxide octahydrate.
Explanation:
The balance chemical equation is :
Mass of barium hydroxide octahydrate = 6.5 g
Moles of barium hydroxide octahydrate =
According to reaction, 2 moles of ammonium thiocyanate reacts with1 mole of barium hydroxide octahydrate. The 0.020635 moles of barium hydroxide octahydrate will react with:
Mass of 0.04127 moles of ammonium thiocyanate;
3.14 grams of ammonium thiocyanate must be used to react completely with 6.5 g barium hydroxide octahydrate