Answer:
11552.45 years
Explanation:
Given that:
Half life = 5730 years
Where, k is rate constant
So,
The rate constant, k = 0.00012 years⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.00012 years⁻¹
Initial concentration
= 160.0 counts/min
Final concentration
= 40.0 counts/min
Time = ?
Applying in the above equation, we get that:-

Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
Answer:
The genetic code is stored in the DNA. DNA is a molecule formed by a sugar, deoxyribose, a phosphate group and four combined nitrogen bases: Adenine (A), Thymine (T), Cytosine (C) and Guanine (G). A gene is a part of DNA.
PH is the water and it color blue
Kinetic Molecular Theory states that gas particles are in constant motion and exhibit perfectly elastic collisions.