For changing potential energy; When you drop a book, gravitational potential energy is transformed into kinetic energy. Your car transforms the chemical potential energy stored in gasoline into the kinetic energy of the car's motion.
For Kinetic Energy; kinetic energy can be converted into electrical energy by a generator or into thermal energy by the brakes on a car.
Answer:
3.7mL is the volume of the object
Explanation:
To convert the mass of any object to volume we must use density that is defined as the ratio between mass of the object and the space that is occupying. For an object that weighs 7.9g and the density is 2.28g/mL, the volume is:
7.9g * (1mL / 2.28mL) =
<h3>3.7mL is the volume of the object</h3>
Answer: 404.04 kJ.
Explanation:
To calculate the moles, we use the equation:
moles of

According to stoichiometry :
2 moles of
on burning produces = 1036 kJ
Thus 0.78 moles of
on burning produces =
Thus the enthalpy change when burning 26.7 g of hydrogen sulfide is 404.04 kJ.
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:

To calculate the yield follow these steps:
<u>1. Mole ratio</u>

<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles


ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles

ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg