Answer:
234.35 °C
Explanation:
Given data:
Volume of balloon = 125000 mL
Moles of oxygen = 3 mol
Pressure = 1 atm
Temperature = ?
Solution:
Formula:
PV = nRT
P = Pressure
V = volume
n = number of moles
R = ideal gas constant
T = temperature
Volume of balloon = 125000 mL × 1 L /1000 mL
Volume of balloon = 125 L
Now we will put the values:
Ideal gas constant = R = 0.0821 atm.L/mol.K
PV = nRT
T = PV/nR
T = 1 atm × 125 L/ 0.0821 atm.L/mol.K × 3 mol
T= 125 /0.2463 /K
T = 507.5 K
K to °C
507.5 K - 273.15 = 234.35 °C
The decomposition of ammonia is characterized by the following decomposition equation:
2NH₃<span> → N</span>₂ <span> + 3H</span>₂
The mole ratio of N₂ : H₂ is 1 : 3
If the number of moles of N₂ = 0.0351 mol
Then the number of moles of H₂ = 0.0351 mol × 3
= 0.1053 mol
The number of moles of hydrogen gas produced when 0.0351 mol of Nitrogen gas is produced after the decomposition of Ammonia is 0.105 mol (OPTION 3).
Answer:
0.0125mol
Explanation:
Molarity (M) = number of moles (n) ÷ volume (V)
n = Molarity × Volume
According to this question, a 0.05M solution contains 250 mL of NaOH. The volume in litres is as follows:
1000mL = 1L
250mL = 250/1000
= 0.250L
n = 0.05 × 0.250
n = 0.0125
The number of moles of NaOH is 0.0125mol.