Answer:
114°
Step-by-step explanation:
The exterior angle is the sum of the remote interior angles.
__
<h3>setup</h3>
(11x +15)° = 60° +6x°
<h3>solution</h3>
5x = 45 . . . . . . . . . divide by °, subtract 15+6x
x = 9 . . . . . . . . . . divide by 5
The measure of exterior angle KMN is ...
m∠KMN = (11(9) +15)° = 114°
_____
<em>Additional comment</em>
Both the sum of interior angles and the sum of angles of a linear pair are 180°. If M represents the interior angle at vertex M, then we have ...
60° +6x° +M = 180°
(11x +15)° +M = 180°
Equating these expressions for 180° and subtracting M gives the relation we used above:
(11x +15)° +M = 60° +6x° +M . . . . . equate the two expressions for 180°
(11x +15)° = 60° +6x° . . . . . . . . . . . subtract M
This is also described by "supplements to the same angle are equal."
First list all the terms out.
e^ix = 1 + ix/1! + (ix)^2/2! + (ix)^3/3! ...
Then, we can expand them.
e^ix = 1 + ix/1! + i^2x^2/2! + i^3x^3/3!...
Then, we can use the rules of raising i to a power.
e^ix = 1 + ix - x^2/2! - ix^3/3!...
Then, we can sort all the real and imaginary terms.
e^ix = (1 - x^2/2!...) + i(x - x^3/3!...)
We can simplify this.
e^ix = cos x + i sin x
This is Euler's Formula.
What happens if we put in pi?
x = pi
e^i*pi = cos(pi) + i sin(pi)
cos(pi) = -1
i sin(pi) = 0
e^i*pi = -1 OR e^i*pi + 1 = 0
That is Euler's identity.
Answer:
N
Step-by-step explanation:
N is the only point that is equally distant from point L and point Q