1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
3 years ago
7

What is the missing angle? Please provide an explanation.

Mathematics
2 answers:
irina [24]3 years ago
5 0

Answer:

64 degrees

Step-by-step explanation:

Lets find the measure of the other angle in the other triangle with measures of 84 and 36.

Since there are 180 degrees in a triangle, we just add the other two angles and subtract from 180:

84 + 36 = 120

180 - 120 = 60

So the measure of the other angle in the other triangle is 60. Since there is a right angle we subtract 60 from 90

90 - 60 = 30

So the triangle with the missing angle has two angles with measures of 86 and 30. Now we add the measures and subtract from 180 again.

86 + 30 = 116

180 - 116 = 64

So the missing angle has a measure of 64 degrees

Phoenix [80]3 years ago
5 0

Answer:

64°

Step-by-step explanation:

all triangles equal 180°

so the first triangle with two angles already know is..

36+84+?=180

120+?=180

180-120=60°

but as you can see when they connect to each other they form 90°

so to find that angle on its own it's (with the triangle with one angle found) it's..

90-60=30°

and as we know all triangles equal 180°, so..

86+30+?=180

116+?=180

180-116=64°

You might be interested in
A museum curator is hanging 7 paintings in a row for an exhibit. There are 4 Renaissance paintings and 3 Baroque paintings. From
Marina CMI [18]

Answer:

144 ways

Step-by-step explanation:

Number of paintings = 7

Renaissance = 4

Baroque = 3

We are hanging from left to right and we will first hang Renaissance painting before baroque painting.

For Renaissance we have 4! Ways of doing so. 4 x3x2x1 = 24

For baroque we have 3! Ways of doing so. 3x2x1 = 6

We have 4!ways x 3!ways

= (4x3x2x1) * (3x2x1) ways

= 144 ways

Therefore we have 144 ways to hang the painting.

6 0
3 years ago
Which of the following numbers are whole numbers
Firdavs [7]

Answer:

B - 2469 and F - 183

Step-by-step explanation:

B and F are whole numbers because they don't have any decimal places.

8 0
3 years ago
Read 2 more answers
Are any of the figures B, C, or D scaled coples of figure A? Explain how you know.
belka [17]

Answer:

C

Step-by-step explanation:

C is the only one that is an enlarged version of A.

3 0
4 years ago
The perimeter of a regular decagon is 363m.<br> State the length of one of its sides.
ikadub [295]

Answer:

36.3 m

Step-by-step explanation:

because a decagon has 10 sides so 363 divided by 10=36.3

7 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • Complete this statement 27x^4a^2+18x^2a^3=9x^2a^2 ( )
    5·1 answer
  • Please Answer The Mean! {NO EXPLANATION NEEDED!} &lt;3
    11·1 answer
  • Using compatible numbers what is 231 divided by 34
    12·2 answers
  • 5 PIONTS+ BRAINLYESS
    13·2 answers
  • Simply the expression. (-1(4-c)
    8·2 answers
  • Please help if you can number 4
    11·2 answers
  • 5. Decide whether each statement is true or false. (1 point each)
    6·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B2%7D%7B3%7D%20%20%5Ctimes%205%5Cfrac%7B2%7D%7B4%7D%20" id="TexFormula1" title=" \
    10·1 answer
  • Which of the statements is false about the additive identity?
    5·1 answer
  • Find(g-f)(x)
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!