Answer:
In the equation y = mx + b for a straight line, the number m is called the slope of the line. Let x = 0, then y = m • 0 + b, so y = b. The number b is the coordinate on the y-axis where the graph crosses the y-axis.
Given:
The graph of a downward parabola.
To find:
The domain and range of the graph.
Solution:
Domain is the set of x-values or input values and range is the set of y-values or output values.
The graph represents a downward parabola and domain of a downward parabola is always the set of real numbers because they are defined for all real values of x.
Domain = R
Domain = (-∞,∞)
The maximum point of a downward parabola is the vertex. The range of the downward parabola is always the set of all real number which are less than or equal to the y-coordinate of the vertex.
From the graph it is clear that the vertex of the parabola is at point (5,-4). So, value of function cannot be greater than -4.
Range = All real numbers less than or equal to -4.
Range = (-∞,-4]
Therefore, the domain of the graph is (-∞,∞) and the range of the graph is (-∞,-4].
Answer:
I think it may be 5m + 16 < 75
Step-by-step explanation:
I don't know if its wrong
The volume of one die is the edge to the power of 3:

The total volume is five times the above volume:

Answer:
Answer:
1st box: Asso. prop= m+(4+x)
2nd box: Comm. Prop= m+4=4+m
3rd box: iden. prop= m+0=m
4th box: Zero prop: m x 0=0