Answer:
im confused on what you mean
Explanation:
Answer:
chloroplasts, cell walls, or intracellular vacuoles
Explanation:
You didn't list the following, but I'm guessing it is chloroplasts, cell walls, or intracellular vacuoles
What we're looking for here is the gas sample's molar mass given its mass, pressure, volume, and temperature. Recalling the gas law, we have

or

where R is <span>0.08206 L atm / mol K, P is the given pressure, T is the temperature, and V is the volume.
Before applying the values given, it is important to make sure that they are to be converted to have consistent units with that of R.
</span>
Thus, we have
P = 736/ 729 = 0.968 atm
T = 28 + 273.15 = 301.15 K
V = 250/1000 = 0.250 L
Now, applying these converted values into the gas law, we have


Given that the mass of the sample is 0.430 g, we have

Thus, the gas sample has a molar mass of 43.9 g/mol.
Answer:
Saturated Fats
Explanation:
Saturated fats are all of the above.
Also, Saturated fat is very unhealthy. Only consume it in small amounts.
Answer:
At a front, the two air masses have different densities, based on temperature, and do not easily mix. One air mass is lifted above the other, creating a low pressure zone.
Explanation:
Hope this helps!