Answer:
The given statement is false.
Explanation:
- A common method of experimentation that is used to collect data on hypotheses of end up causing-effect is a contrast between two groups.
- One community, the experimental group, is receiving medication for having any result. Some other group becomes left exposed, the control group, whether creating a different treatment.
Metals are to the left of the zig-zag, nonmetals are to the right, and metalloids lie on/beside the line.
Answer:
Explanation:
Cu²⁺ + 2e⁻ → Cu ( copper gets reduced )
Cu → Cu²⁺ + 2e⁻ ( copper gets oxidized )
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized.
Na₂CO₃ + H₃PO₄ → Na₂HPO₄ + CO₂ + H₂O
The oxidation state of carbon on reactant side is +4. while on product side is also +4 so it neither oxidized nor reduced.
H₂S + 2NaOH → Na₂S + 2H₂O
The oxidation sate of sulfur is -2 on reactant side and in product side it is also -2 so it neither oxidized nor reduced.
Answer:
The molar concentration of HCl in the aqueous solution is 0.0131 mol/dm3
Explanation:
To get the molar concentration of a solution we will use the formula:
<em>Molar concentration = mass of HCl/ molar mass of HCl</em>
<em></em>
Mass of HCl in the aqueous solution will be 40% of the total mass of the solution.
We can extract the mass of the solution from its density which is 1.2g/mL
We will further perform our analysis by considering only 1 ml of this aqueous solution.
The mass of the substance present in this solution is 1.2g.
<em>The mass of HCl Present is 40% of 1.2 = 0.48 g.</em>
The molar mass of HCl can be obtained from standard tables or by adding the masses of Hydrogen (1 g) and Chlorine (35.46 g) = 36.46g/mol
Therefore, the molar concentration of HCl in the aqueous solution is 0.48/36.46 = 0.0131 mol/dm3