Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]
Kinetic energy is energy that a body possesses by virtue of being in motion, there for if an object is moving, it has kinetic energy.
Example; A roller coaster sitting on top of hill has potential energy. When it starts to move and is going down the hill, it has kinetic energy. :)
<span>The statement is TRUE. Water does have potential energy at the top of a slope. The reason why is that potential energy is energy possessed by a body based on its position relative to a zero point. In this case, water at the top of the slope is at an elevation above ground (zero point). The energy is not kinetic (moving) energy since the water is not moving.</span>
Answer:
The uncertainty in the location that must be tolerated is 
Explanation:
From the uncertainty Principle,
Δ
Δ

The momentum P
= (mass of electron)(speed of electron)
= 
= 
If the uncertainty is reduced to a 0.0010%, then momentum
= 
Thus the uncertainty in the position would be:
Δ
Δ