<h2>When two object P and Q are supplied with the same quantity of heat, the temperature change in P is observed to be twice that of Q. The mass of P is half that of Q. The ratio of the specific heat capacity of P to Q</h2>
Explanation:
Specific heat capacity
It is defined as amount of heat required to raise the temperature of a substance by one degree celsius .
It is given as :
Heat absorbed = mass of substance x specific heat capacity x rise in temperature
or ,
Q= m x c x t
In above question , it is given :
For Q
mass of Q = m
Temperature changed =T₂/2
Heat supplied = x
Q= mc t
or
X=m x C₁ X T₁
or, X =m x C₁ x T₂/2
or, C₁=X x 2 /m x T₂ (equation 1 )
For another quantity : P
mass of P =m/2
Temperature= T₂
Heat supplied is same that is : X
so, X= m/2 x C₂ x T₂
or, C₂=2X/m. T₂ (equation 2 )
Now taking ratio of C₂ to c₁, We have
C₂/C₁= 2X /m.T₂ /2X /m.T₂
so, C₂/C₁= 1/1
so, the ratio is 1: 1
Answer is 6 tires.
This is a projectile question.
First make sure units are consistent - express speed in m/s.
20 km/h = 20000m / 3600 s = 5.56 m/s
Assume the takeoff point of the ramp is at ground level (height, h, = 0m). We need to determine how long Joe is in the air, and use that time to calculate the horizontal distance he traveled.
Joe is traveling 5.56 m/s on a ramp angled at 20 degrees. There are vertical and horizontal components to his speed:
Vertical speed = 5.56sin20 = 1.90 m/s
Horizontal speed = 5.56cos20 = 5.22 m/s
An easy way to proceed is to calculate the time it takes for Joe’s vertical speed to reach 0m/s - this represents the time when Joe is at his maximum height and is therefore halfway through the trip. Double whatever time this is to find the total time of the trip. Remember he is decelerating due to gravity:
Time to peak:
a = Δv / Δt
-9.8 = -1.9 / Δt
Δt = 0.19s
Total trip time:
0.19 x 2 = 0.38s
Now that we have the total tome Joe is in the air, we can find the horizontal distance he traveled:
v = d / t
5.22 = d / 0.38
d = 1.98m
Now divide this total distance by the length of an individual tire to find the number of tires he will clear:
1.98 / 0.3 = 6.6 tires
Therefore he can jump 6 tires safely (he will land in the middle of the 7th tire).
Lots of steps I know but just try to think of the situation and keep track of the vertical and horizontal things!
Hey there,
Your question states: <span>How long does it take for light from a star that is 8 light-years away to reach earth?
It take just about
(</span>
8 earth years) <span> for light from a star that is 8 light-years away to reach earth. That is how </span>
it would take.
Hope this helps.
~Jurgen
Answer:
A) Sound Energy
Explanation:
Electrical and nuclear energy are examples of potential energy