I'm not accurately sure if you're asking for why the bulb of a thermometer is in a cylindrical shape. So let me continue. The shape of the which is thin and cylindrical in the shape is the increase of the effect of mercury in the tube to rise and fall depending on the contact temperature.
Answer:
The electric potential at the midpoint between the two particles is 3.349 X 10⁻³ Volts
Explanation:
Electric potential is given as;
V = E*r
where;
E is the electric field strength, = kq/r²
V = ( kq/r²)*r
V = kq/r
k is coulomb's constant = 8.99 X 10⁹ Nm²/C²
q is the charge of the particles = 1.6 X 10⁻¹⁹ C
r is the distance between the particles = 859 nm
At midpoint, the distance = r/2 = 859nm/2 = 429.5 nm
V = (8.99 X 10⁹ * 1.6 X 10⁻¹⁹)/ (429.5 X 10⁻⁹)
V = 3.349 X 10⁻³ Volts
Therefore, the electric potential at the midpoint between the two particles is 3.349 X 10⁻³ Volts
Answer:
(a) 7 m
(b) 1 m
Explanation:
Given:
The magnitude of displacement vector 'a' is 3 m
The magnitude of displacement vector 'b' is 4 m.
The vector 'c' is the vector sum of vectors 'a' and 'b'.
(a)
Now, when the angle between the vectors is 0°, it means that the vectors are in the same direction. When vectors are in the same direction, then their resultant magnitude is simply the sum of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in same direction is given as:

Therefore, the magnitude of vector 'c' is 7 m when angle between 'a' and 'b' is 0°.
(b)
When the angle between the vectors is 180°, it means that the vectors are exactly in the opposite direction. When the vectors are in opposite direction, then their resultant magnitude is the subtraction of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in opposite direction is:

Therefore, the magnitude of vector 'c' is 1 m when angle between 'a' and 'b' is 180°.
Answer:
if it is a true or false, the answer is true
Explanation: