1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex17521 [72]
3 years ago
5

How many millimeters are 120 meters ? Help ! Please <3

Physics
2 answers:
blsea [12.9K]3 years ago
8 0

Answer:

120,000

Explanation:

Millimeters to meters calculation-

Multiply by 1,000.

120 x 1,000 = 120,000.

This is the correct answer and formula.

Hope this helps!

natulia [17]3 years ago
4 0
The answer is 120000
You might be interested in
Which of the following is not an example of work?
barxatty [35]
<span>The following which is not an example of work is </span>C. holding a tray in the cafeteria line because <span>if force displaces an object it should work. I think it's clear and I am pretty sure this answer will help you.</span>
8 0
3 years ago
For thermal equilibrium at temperature Tan appropriate measure of energy is kT where k is Boltzmann's constant. Convert the foll
Schach [20]

Answer:

1 cm⁻¹ =1.44K  1 ev = 1.16 10⁴ K

Explanation:

The relationship between temperature and thermal energy is

     E = K T

The relationship of the speed of light

    c =λ f = f / ν          1/λ= ν

The Planck equation is

          E = h f

Let's start the transformations

     c = f λ = f / ν        

     f = c ν

     E = h f

     E = h c ν

     E = KT

     h c ν = K T

     T = h c ν  / K =( h c / K) ν

Let's replace the constants

     h = 6.63 10⁻³⁴ J s

     c = 3 10⁸ m / s

     K = 1.38  10⁻²³ J / K

 

     v = 1 cm-1 (100 cm / 1 m) = 10² m-1

   

     T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²

     A = h c / K = 1,441 10⁻²

     T =  1.44K

     ν = 103 cm⁻¹ = 103 10² m

     T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²

     T = 148K

1 Rydberg = 1.097 10 7 m

As we saw at the beginning the λ=1 / v

     T = (h c / K) 1 /λ

     T = 1,441 10⁻²  1 / 1,097 10⁷

     T = 1.3 10⁻⁹ K

    E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J

    E = KT

    T = E/K

    T = 1.6 10⁻¹⁹ /1.38 10⁻²³

    T = 1.16 10⁴ K

3 0
3 years ago
The instantaneous speed of a particle moving along one straight line is v(t) = ate−6t, where the speed v is measured in meters p
beks73 [17]

Answer:

v_max = (1/6)e^-1 a

Explanation:

You have the following equation for the instantaneous speed of a particle:

v(t)=ate^{-6t}   (1)

To find the expression for the maximum speed in terms of the acceleration "a", you first derivative v(t) respect to time t:

\frac{dv(t)}{dt}=\frac{d}{dt}[ate^{-6t}]=a[(1)e^{-6t}+t(e^{-6t}(-6))]  (2)

where you have use the derivative of a product.

Next, you equal the expression (2) to zero in order to calculate t:

a[(1)e^{-6t}-6te^{-6t}]=0\\\\1-6t=0\\\\t=\frac{1}{6}

For t = 1/6 you obtain the maximum speed.

Then, you replace that value of t in the expression (1):

v_{max}=a(\frac{1}{6})e^{-6(\frac{1}{6})}=\frac{e^{-1}}{6}a

hence, the maximum speed is v_max = ((1/6)e^-1)a

5 0
3 years ago
An object is originally moving at a constant velocity of 8 m/s in the -x direction. It moves at this constant velocity for 3 sec
aivan3 [116]

Answer:

244.64m

Explanation:

First, we find the distance traveled with constant velocity. It's simply multiplying velocity time the time that elapsed:

x = V*t = -8\frac{m}{s} *3s = -24m

After this, the ball will start traveling with a constant acceleration motion. Due to the fact that the acceleration is the opposite direction to the initial velocity, this motion will have 2 phases:

1. The velocity will start to decrease untill it reaches 0m/s.

2. Then, the velocity will start to increase at the rate of the acceleration.

The distance that the ball travels in the first phase can be found with the following expression:

v^2 = v_0^2 + 2a*d

Where v is the final velocity (0m/s), v_0 is the initial velocity (-8m/s) and a is the acceleration (+9m/s^2). We solve for d:

d = \frac{v^2 - v_0^2}{2a} = \frac{(0m/s)^2 - (-8m/s)^2}{2*7m/s^2}= -4.57m

Now, before finding the distance traveled in the second phase, we need to find the time that took for the velocity to reach 0:

t_1 = \frac{v}{a} = \frac{8m/s}{7m/s^2} = 1.143 s

Then, the time of the second phase will be:

t_2 = 9s - t_1 = 9s - 1.143s = 7.857s

Using this, we using the equations for constant acceleration motion in order to calculate the distance traveled in the second phase:

x = \frac{1}{2}a*t^2 + v_0*t + x_0

V_0, the initial velocity of the second phase, will be 0 as previously mentioned. X_0, the initial position, will be 0, for simplicity:

x = \frac{1}{2}*7\frac{m}{s^2}*t^2 + 0m/s*t + 0m = 216.07m

So, the total distance covered by this object in meters will be the sum of all the distances we found:

x_total = 24m + 4.57m + 216.07m = 244.64m

8 0
3 years ago
What measures the amount of displacement in a transverse wave
MAVERICK [17]
Unlike a longitudinal wave, a transverse wave moves about, perpendicular to the direction of propagation. The particles in a transverse wave do not travel along the direction of propagation, but only oscillate up and down on its equilibrium position. With this, the displacement can be determined by measuring (in the case of electronic waves, using an oscilloscope or spectrum analyzer) and setting the desired units to measure the wave in.
4 0
3 years ago
Other questions:
  • Where does every piece of matter begin?
    11·1 answer
  • What does strong language mean ?
    10·2 answers
  • (8c5p80) Imagine a landing craft approaching the surface of Callisto, one of Jupiter's moons. If the engine provides an upward f
    10·1 answer
  • A hot iron ball of mass 200 g is cooled to a temperature of 22°C. 6.9 kJ of heat is lost to the surroundings during the process.
    12·2 answers
  • We will look at an example of a banked curve. In this case the normal force provides the needed radial acceleration. This allows
    7·1 answer
  • A soccer ball was kicked . it had the mass of .42 kg and accelerated at 25m/s . what was the force?
    11·1 answer
  • Which special effects technique is being used in television weather reports in which meteorologists stand in front of moving map
    6·2 answers
  • Rgfffffffffffffffffffffffffffffffffffffffffffffffffffffff
    7·1 answer
  • A bus that was moving at a high speed stopped suddenly. One of
    6·1 answer
  • Which car is experiencing negative acceleration?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!