<h3><u>Answer;</u></h3>
Higher velocity of particles
<h3><u>Explanation;</u></h3>
The diffusion rate is determined by a variety of factors which includes;
- Temperature such that the higher the temperature, the more kinetic energy the particles will have, so they will move and mix more quickly and the diffusion rate will be high.
- Concentration gradient such that the greater the difference in concentration, the quicker the rate of diffusion.
- Higher velocity of particles increases the diffusion rate as this means more kinetic energy by the particles and hence the particles will mix and move faster, thus higher diffusion rate.
Answer:
The balanced chemical equation: NH₃ + 2 HF → NH₄⁺ + HF₂⁻
Explanation:
According to the Brønsted–Lowry acid–base theory, the acid- base reaction is a type of chemical reaction between the acid and base to give a conjugate acid and a conjugate base.
In this reaction, a Brønsted–Lowry acid loses a proton to form a conjugate base. Whereas, a Brønsted–Lowry base accepts a proton to form a conjugate acid.
Acid + Base ⇌ Conjugate Base + Conjugate Acid
The acid dissociation constant (Kₐ) <em>signifies the acidic strength of a chemical species.</em>
∵ pKₐ = - log Kₐ
Thus for a strong acid, Kₐ value is large and pKₐ value is small.
pKₐ (HF) = 3.2 → strong acid
pKₐ (NH₃) = 38 → weak acid
<u>The chemical reaction involved in the dissolution process:</u>
NH₃ + 2 HF → NH₄⁺ + HF₂⁻
In this acid-base reaction, the acid HF reacts with NH₃ base to give the conjugate base HF₂⁻ and conjugate acid NH₄⁺.
<u>HF (acid) donates a proton to form the conjugate base, HF₂⁻ ion. NH₃ (base) accepts a proton to form the conjugate acid. </u>
Answer:
The solubility of methylacetylene is 0,11 g L⁻¹
Explanation:
Henry's law is a gas law that states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid.
The formula is:
C = kH P
Where C is solubility of the gas (In mol/L)
kH is Henry constant (9,23x10⁻² mol L⁻¹ atm⁻¹)
An P is partial pressure (0,301 atm)
Solving, C = 2,78x10⁻³ mol L⁻¹. In grams per liter:
2,78x10⁻³ mol L⁻¹ₓ
= <em>0,11 g L⁻¹</em>
<em></em>
I hope it helps!
Technically there is only one phase unless you account for a solution where you have a pure liquid with something dissolved in it. Unless you count aqueous as a phase which is just dissolved. Since you are in high school the answer you are looking for is one. <span />