The final temperature = 36 °C
<h3>Further explanation</h3>
The balanced combustion reaction for C₆H₆
2C₆H₆(l)+15O₂(g)⇒ 12CO₂(g)+6H₂O(l) +6542 kJ
MW C₆H₆ : 78.11 g/mol
mol C₆H₆ :

Heat released for 2 mol C₆H₆ =6542 kJ, so for 1 mol

Heat transferred to water :
Q=m.c.ΔT

Answer:
<em>C. Potential energy</em>
Explanation:
Kinetic energy and gravitational potential energy are both forms of potential energy. Potential energy is stored energy, when an object is not in motion it has stored energy. When an object is an motion it has kinetic energy. An object posses gravitational potential energy when it is above or below the zero height.
Answer:
116.88g of table salt (NaCl) contains two formula units
Explanation:
Now,
We know that 1 formula unit of sodium chloride has a molar mass of 58.44g/mol
Hence;
Mass of 1 formula unit = 58.44g
Mass of x formula units = 116.88g
x = 116.88g * 1 formula unit/58.44g
x = 2 formula units
Therefore;
116.88g of table salt (NaCl) contains two formula units
<span> First you need to know how many isotopes there are of silicon, and its average atomic units (look at periodic table). Then make up a system of equations to solve for it. Theres 3 stable silicon isotopes (28, 29, 30) so you will need to have 3 equations. You must be given the percent abundance of at least one of the isotopes to solve because here I can only see 2 equations (numbered down below) set x = percent abundance of si-28 y = percent abundance of si-29 z = percent abundance of si-30 since all of silicon atoms account for 100% of all silicon: x + y + z = 100% = 1 therefore: 1) x = 1 - y - z You also have 2) 28x + 29y + 30z = average atomic mass you can substitute x so that equation becomes: 28 (1 - y - z) + 29y + 30z = average atomic mass See how you have 2 variables here? You cant go on until you know the value of one isotope already or you have given a clue which you can derive the third equation</span>