Yes! Becuz baking soda is strong and if you mix it with any liqued it makes BUBBLES
From the statement of Hess' law, the enthalpy of the reaction A---> C is +90 kJ
<h3>What is Hess' law?</h3>
Hess' law of constant heat summation states that for a multistep reaction, the standard enthalpy of reaction is always constant and is independent of the pathway or intermediate routes taken.
From Hess' law, the enthalpy change for the reaction A ----> C is calculated as follows:
A---> C = A ---> B + B ---> C
ΔH of A---> C = 30 kJ + 60 kJ
ΔH = 90 kJ
Therefore, the enthalpy of the reaction A---> C is +90 kJ
The above reaction A---> C can be shown in the enthalpy diagram below:
A -------------------> C (ΔH = +90 kJ)
\ /
\ / (ΔH = +60 kJ)
(ΔH = +30 J) \ /
> B
Learn more about enthalpy and Hess law at: brainly.com/question/9328637
Answer:
The arrow points from the reactants to the products, so just follow the arrows.
Explanation:
some have the reactants on the left and the products on the right, and others are the opposite... just know that
reactants---------> products
or
products<-----------reactants
Answer:
There is 2.52 kJ of energy released (option 4)
Explanation:
Step 1: Data given
The enthalpy of fusion of methanol (CH3OH) is 3.16 kJ/mol
Mass of methanol = 25.6 grams
Molar mass of methanol = 32.04 g/mol
Step 2: Calculate moles of methanol
Moles methanol = mass methanol / molar mass methanol
Moles methanol = 25.6 grams / 32.04 g/mol
Moles methanol = 0.799 moles
Step 3: Calculate energy transfer
Energy transfer = moles * enthalpy of fusion
Energy = 0.799 moles * 3.16 kJ/mol
Energy = 2.52 kJ released
There is 2.52 kJ of energy released
It 1
cause yea it is im doing it in class and the answers is 1