Answer:
0.3267 M
Explanation:
To solve this problem, first we calculate how many moles of Mn(ClO₄)₂ are contained in 23.640 g of Mn(ClO₄)₂·6H₂O.
Keep in mind that the crystals of Mn(ClO₄)₂ are hydrated, and <em>we need to consider those six water molecules when calculating the molar mass of the crystals</em>.
Molar mass of Mn(ClO₄)₂·6H₂O = 54.94 + (35.45+16*4)*2 + 6*18 = 361.84 g/mol
Now we <u>proceed to calculate</u>:
- 23.640 g Mn(ClO₄)₂·6H₂O ÷ 361.84 g/mol = 0.0653 mol Mn(ClO₄)₂·6H₂O = mol Mn(ClO₄)₂
Now we divide the moles by the volume, to <u>calculate molarity</u>:
- 200 mL⇒ 200/1000 = 0.200 L
- 0.0653 mol Mn(ClO₄)₂ / 0.200 L = 0.3267 M
984 grams of strontium will be recovered from 9.84x10^8 cubic meter of seawater.
Explanation:
From the question data given is :
volume of strontium in sea water= 9.84x10^8 cubic meter
(1 cubic metre = 1000000 ml)
so 9 .84x10^8 cubic meter
= 984 ml.
density of sea water = 1 gram/ml
from the formula mass of strontium can be calculated.
density = 
mass = density x volume
mass = 1 x 984
= 984 grams of strontium will be recovered.
98400 centigram of strontium will be recovered.
Strontium is an alkaline earth metal and is highly reactive.
C-c-c-c-c
|
c
c-c-c-c-c
|
c
c
|
c-c-c-c
|
c
c-c-c-c
| |
c c
Answer:
53.7 grams of HNO3 will be produced
Explanation:
Step 1: Data given
Mass of NO2 = 59.0 grams
Molar mass NO2 = 46.0 g/mol
Step 2: The balanced equation
3NO2 + H2O→ 2HNO3 + NO
Step 3: Calculate moles NO2
Moles NO2 = 59.0 grams / 46.0 g/mol
Moles NO2 = 1.28 moles
Step 4: Calculate moles HNO3
For 3 moles NO2 we need 1 mol H2O to produce 2 moles HNO3 and 1 mol NO
For 1.28 moles NO2 we'll have 2/3 * 1.28 =0.853 moles HNO3
Step 7: Calculate mass HNO3
Mass HNO3 = 0.853 moles * 63.01 g/mol
Mass HNO3 = 53.7 grams
53.7 grams of HNO3 will be produced
Denitrification is part of the nitrogen cycle