Answer:
131.8 g.
Explanation:
- There is a relation that relates the density of the substance (d) to the mass (m) and the volume of the substance (V):
<u><em>d = m / V.</em></u>
d = 0.8787 g/ml.
V = 0.15 L x 1000 = 150 ml.
- ∴ the mass of 0.15 L of benzene = d x V = (0.8787 g/ml) (150 ml) = 131.8 g.
39.96 g product form when 16.7 g of calcium metal completely reacts.
<h3>What is the stoichiometric process?</h3>
Stoichiometry is a section of chemistry that involves using relationships between reactants and/or products in a chemical reaction to determine desired quantitative data.
Equation:
→ 
In this case, for the undergoing reaction, we can compute the grams of the formed calcium chloride by noticing the 1:1 molar ratio between calcium and it (stoichiometric coefficients) and using their molar mass of 40 g/mol and 111 g/mol by using the following stoichiometric process:
= 16.7 g Ca x
x
x 
= 39.96 g
Hence, 39.96 g product form when 16.7 g of calcium metal completely reacts.
Learn more about the stoichiometric process here:
brainly.com/question/15047541
#SPJ1
Answer:
The correct answer is - A. Each organ does part of a larger job.
Explanation:
An organ in an organ system of an individual organism is the group of similar tissues that collectively perform a common function in the organ system and play their part in a larger job.
A group of organs makes an organ system to perform a particular but large function in the organism for its survival. An example of the organ in an organ system is the heart in the cardiovascular system. The heart is an organ that pumps the blood out of the heart to the various part of the cardiovascular system such as lungs, arteries, and veins so it can take nutrients and oxygen to various parts carried by the blood.
Baking powder is used to increase the volume and lighten the texture of baked goods. It works by releasing carbon dioxide gas into a batter or dough through an acid–base reaction, causing bubbles in the wet mixture to expand and thus leavening the mixture.
MgH2 + 2 H2O → Mg(OH)2 + 2 H2