I think the answer would be trenches but I’m sorry if I’m wrong
Answer: The half-reactions represents reduction are as follows.
Explanation:
A half-reaction where addition of electrons take place or a reaction where decrease in oxidation state of an element takes place is called reduction-half reaction.
For example, the oxidation state of Cr in is +6 which is getting converted into +3, that is, decrease in oxidation state is taking place as follows.
Similarly, oxidation state of Mn in is +7 which is getting converted into +2, that is, decrease in oxidation state is taking place as follows.
Thus, we can conclude that half-reactions represents reduction are as follows.
Using Phosphoric acid will work perfectly for producing Hydrogen halides because its not an Oxidizing agent. ...
Using an ionic chloride and Phosphoric acid
H3PO4 + NaCl ==> HCl + NaH2PO4
H3PO4 + NaI ==> HI + NaH2PO4
H2SO4 + NaCl ==> HCl + NaHSO4
This method(Using H2So4) will work for all hydrogen hydrogen halide except Hydrogen Iodide and Hydrogen Bromide.
The Sulphuric acid won't be useful for producing Hydrogen Iodide because its an OXIDIZING AGENT. Whist producing the Hydrogen Iodide... Some of the Iodide ions are oxidized to Iodine.
2I-² === I2 + 2e-
Answer:
Electrolysis
Explanation:
The electrolysis of water is one such experiment that shows that water is made up of hydrogen and oxygen atoms only in the ratio of 2 to 1.
In the electrolysis of water, electricity is passed through acidified water to cause it to decompose.
The electrolysis of water is also known as the electrolysis of dilute tetraoxosulphate (VI) acid.
At the cathode, H⁺ ions are discharged and hydrogen gas is liberated:
2H⁺ + 2e⁻ → H₂
At the anode, both the sulfate ion and hydroxyl ions migrate to this electrode. Only the OH⁻ is selected for preferential discharge due to its lower position in that activity series.
4OH⁻ → 2H₂O + O₂ + 4e⁻
Oxygen gas is produced at the anode.
This electrolysis demonstrates the volumetric composition of water that is, 2 volumes of hydrogen at the cathode and 1 volume of oxygen at the anode.