The chemical behavior of an atoms is determine by the formation or destruction of chemical bonds. The chemical bonds are the result of the interaction of the electrons of the atoms. Chemical properties of the atoms are given by how attached are the shell electrons attached to the nucleus and how they interact with other atoms. Chemical changes are the result of exchange valence electrons of the atoms. So, <span>the answer is the atomic particle that determines the chemical behavior of an atom is the electron, because it is the particle that is active in chemical bonding.</span>
<span>Out of the following given choices;</span>
<span>a. cliff b. fault </span>
<span>c. plateau d. mountain</span>
<span>The answer is
b. A divergent boundary is a line at which two tectonic plates are moving away from each other. It is caused by the two magma convection currents in the mantle moving in opposing directions (one clockwise, the other anti-clockwise) hence dragging the crust with them. Therefore the biggest force at the boundary on the crust is that of pulling. This causes <span>fractures and faults on the earth’s crust.</span></span>
Answer:
7. .........................
Answer:
In the Lewis structure of P4 there are 6 bonding pairs and 4 lone pairs of electrons.
Explanation:
The structure of tetrahedral molecule of P4 is provided below.
Each phosphorus atom has 5 valence electrons out of which 3 electrons involve in bonding and the rest 2 electrons exist as a lone pair that does not involve in bonding.Hence each phosphorus atom has one lone pair.In P4 molecule there are phosphorus atoms and hence 4 lone pairs in total.
As you can see in the figure, each phosphorus atom is bonded to the other three atoms.A bond is formed when two atoms share one electron each and the pair is called bonding pair.
From the figure we can see that there are 6 bonds in total.Each bond consist of one bonding pair of electrons and hence in total there are 6 bonding pairs of electrons.
Hence in a P4 molecule there are six bonding pairs and 4 lone pairs of electrons.
Answer:
Collisions between gas particles are elastic; there is no net gain or loss of kinetic energy.
Explanation:
When a gas is paced in a container, the molecules of the gas have little or no intermolecular interaction between them. There is a lot of space between the molecules of the gas.
The gas molecules move at very high speed and collide with each other and with the walls of container.
The collision of these particles with each other is perfectly elastic hence the kinetic energy of the colliding gas particles do not change.