Answer:
i belive it is the first one.
Step-by-step explanation:
Omg at school recently we learned the exact same thing.
(x-8)+4x=7x-16
5x-8=7x-16
-5x -5x
-----------------
-8=2x-16
+16 +16
-----------------
8=2x
4=x
7(4)-16
The answer is 12*
Answer:
a) h = 123/x^2
b) S = x^2 +492/x
c) x ≈ 6.27
d) S'' = 6; area is a minimum (Y)
e) Amin ≈ 117.78 m²
Step-by-step explanation:
a) The volume is given by ...
V = Bh
where B is the area of the base, x^2, and h is the height. Filling in the given volume, and solving for the height, we get:
123 = x^2·h
h = 123/x^2
__
b) The surface area is the sum of the area of the base (x^2) and the lateral area, which is the product of the height and the perimeter of the base.

__
c) The derivative of the area with respect to x is ...

When this is zero, area is at an extreme.
![0=2x -\dfrac{492}{x^2}\\\\0=x^3-246\\\\x=\sqrt[3]{246}\approx 6.26583](https://tex.z-dn.net/?f=0%3D2x%20-%5Cdfrac%7B492%7D%7Bx%5E2%7D%5C%5C%5C%5C0%3Dx%5E3-246%5C%5C%5C%5Cx%3D%5Csqrt%5B3%5D%7B246%7D%5Capprox%206.26583)
__
d) The second derivative is ...

This is positive, so the value of x found represents a minimum of the area function.
__
e) The minimum area is ...

The minimum area of metal used is about 117.78 m².
If you’re trying to find x, x = 3.
Answer:
Step-by-step explanation:
If BOTH equations are in slope-intercept form then the-graphing-? method would be best, but the-substitution-? method would also be effective since both y's are already by itself.
If ONE of the equations is solved for x or y and the other equation is not, then the-substitution-? method is best.
If BOTH equations are lined up in standard form & the coefficients of x or y are opposites then the BEST method is definitely the-elimination--? method.
If BOTH equations are lined up in standard form the elimination method would be best. But if the coefficient of x or y is 1, then the-substitution--? method is also effective.