Given:
Quadrilateral with opposite lines are parallel.
To find:
The value of x
Solution:
Quadrilateral with opposite lines are parallel.
Therefore the quadrilateral is a parallelogram.
In parallelogram, the adjacent angles are supplementary angles.
⇒ 48° + x = 180°
Subtract 48° from both sides.
⇒ 48° + x - 48° = 180° - 48°
⇒ x = 132°
The value of the angle x is 132°.
It has already given you the answer.
This is always ''interesting'' If you see an absolute value, you always need to deal with when it is zero:
(x-4)=0 ===> x=4,
so that now you have to plot 2 functions!
For x<= 4: what's inside the absolute value (x-4) is negative, right?, then let's make it +, by multiplying by -1:
|x-4| = -(x-4)=4-x
Then:
for x<=4, y = -x+4-7 = -x-3
for x=>4, (x-4) is positive, so no changes:
y= x-4-7 = x-11,
Now plot both lines. Pick up some x that are 4 or less, for y = -x-3, and some points that are 4 or greater, for y=x-11
In fact, only two points are necessary to draw a line, right? So if you want to go full speed, choose:
x=4 and x= 3 for y=-x-3
And just x=5 for y=x-11
The reason is that the absolute value is continuous, so x=4 works for both:
x=4===> y=-4-3 = -7
x==4 ====> y = 4-11=-7!
abs() usually have a cusp int he point where it is =0
Hope it helps, despite being this long!
Unlocking pm....................................
Answer:
A system of the equation of a circle and a linear equation
A system of the equation of a parabola and a linear equation
Step-by-step explanation:
Let us verify our answer
A system of the equation of a circle and a linear equation
Let an equation of a circle as
..........(1)
Let a liner equation Y = x ............(2)
substitute (2) in (1)

so Y =
so the two solution are (
)
A system of the equation of a parabola and a linear equation
Let equation of Parabola be 
and linear equation y = x
substitute

Y = 0,1
so the two solutions will be (0,0) and (1,1)