Answer:
y^2-(x+4)
Step-by-step explanation:
y^2-(x+4)
Answer:
it would be 21
the only difference is that one is a negative and the other is a positive. The absolute value is the distance the number is from 0 on the number line.
hope i helped :)
Check the picture below.
make sure your calculator is in Degree mode.
See the attached figure to better understand the problem
let
L-----> length side of the cuboid
W----> width side of the cuboid
H----> height of the cuboid
we know that
One edge of the cuboid has length 2 cm-----> <span>I'll assume it's L
so
L=2 cm
[volume of a cuboid]=L*W*H-----> 2*W*H
40=2*W*H------> 20=W*H-------> H=20/W------> equation 1
[surface area of a cuboid]=2*[L*W+L*H+W*H]----->2*[2*W+2*H+W*H]
100=</span>2*[2*W+2*H+W*H]---> 50=2*W+2*H+W*H-----> equation 2
substitute 1 in 2
50=2*W+2*[20/W]+W*[20/W]----> 50=2w+(40/W)+20
multiply by W all expresion
50W=2W²+40+20W------> 2W²-30W+40=0
using a graph tool------> to resolve the second order equation
see the attached figure
the solutions are
13.52 cm x 1.48 cm
so the dimensions of the cuboid are
2 cm x 13.52 cm x 1.48 cm
or
2 cm x 1.48 cm x 13.52 cm
<span>Find the length of a diagonal of the cuboid
</span>diagonal=√[(W²+L²+H²)]------> √[(1.48²+2²+13.52²)]-----> 13.75 cm
the answer is the length of a diagonal of the cuboid is 13.75 cm
Let
R = Ralph's age
S = Sara's age
First statement is translated as:
S = 3R
Second statement is translated as:
S + 4 = 2(R + 4)
Use the first equation to be substituted into the second one in terms of R which is the one we are actually going to solve for Ralph's age.
Since S = 3R, then
3R + 4 = 2(R + 4)
3R + 4 = 2R + 8
3R - 2R = 8 - 4
R = 4 years old