<span>Agre tested his hypothesis in a simple experiment where he compared cells which contained the protein in question with cells which did not have it. The trials were ran with artificial cells, liposomes, which are a type of soap bubble. He found that the liposomes became permeable if the protein was planted inside of the membrane.</span>
Answer:
34 g
Explanation:
Let's consider the following balanced equation.
N₂ + 3 H₂ → 2 NH₃
The theoretical mass ratio of N₂ to H₂ is 28g N₂ : 6g H₂ = 4.6g N₂ : 1g H₂.
The experimental mass ratio of N₂ to H₂ is 100g N₂ : 6g H₂ = 16.6g N₂ : 1g H₂.
As we can see, hydrogen is the limiting reactant.
According to the task, we 6 g of H₂ react completely, 34 g of ammonia are produced.
Kinetic and potential energy would be the correct answer to your question
Answer:
Please see the answer..hope its works
Explanation:
The NMR spectrometer will acquire data for the wrong chemical shift range and you will potentially have skewed data when opening spinworks-NMR spectrometer examines a specific 12 ppm range based on the expected solvent peak, and if a different solvent is used a different range may be examined
To explain further, If the user declares the wrong solvent, one of two things may happen. Firstly, the spectrometer may not be able to establish a deuterium lock and will report an error and not run the sample. Secondly, the spectrometer may be able to establish a lock despite the fact that the deuterium signal is off resonance. If the lock is established, the field strength will be set to a value appropriate to put the declared solvent signal on-resonance. When a proton NMR spectrum is collected, the chemical shift scale will be incorrect by an amount equal to the proton chemical shift difference between the true solvent and the declared solvent.