1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
4 years ago
13

Why is it important that ironworkers wait to begin work until after cement masons are finished with their job?

Engineering
1 answer:
ziro4ka [17]4 years ago
3 0

Answer:

Constructing a building's framework requires a solid foundation

is the answer

Explanation:

You might be interested in
A long aluminum wire of diameter 3 mm is extruded at a temperature of 280°C. The wire is subjected to cross air flow at 20°C at
Musya8 [376]

Answer:

Explanation:

Given:

Diameter of aluminum wire, D = 3mm

Temperature of aluminum wire, T_{s}=280^{o}C

Temperature of air, T_{\infinity}=20^{o}C

Velocity of air flow V=5.5m/s

The film temperature is determined as:

T_{f}=\frac{T_{s}-T_{\infinity}}{2}\\\\=\frac{280-20}{2}\\\\=150^{o}C

from the table, properties of air at 1 atm pressure

At T_{f}=150^{o}C

Thermal conductivity, K = 0.03443 W/m^oC; kinematic viscosity v=2.860 \times 10^{-5} m^2/s; Prandtl number Pr=0.70275

The reynolds number for the flow is determined as:

Re=\frac{VD}{v}\\\\=\frac{5.5 \times(3\times10^{-3})}{2.86\times10^{-5}}\\\\=576.92

sice the obtained reynolds number is less than 2\times10^5, the flow is said to be laminar.

The nusselt number is determined from the relation given by:

Nu_{cyl}= 0.3 + \frac{0.62Re^{0.5}Pr^{\frac{1}{3}}}{[1+(\frac{0.4}{Pr})^{\frac{2}{3}}]^{\frac{1}{4}}}[1+(\frac{Re}{282000})^{\frac{5}{8}}]^{\frac{4}{5}}

Nu_{cyl}= 0.3 + \frac{0.62(576.92)^{0.5}(0.70275)^{\frac{1}{3}}}{[1+(\frac{0.4}{(0.70275)})^{\frac{2}{3}}]^{\frac{1}{4}}}[1+(\frac{576.92}{282000})^{\frac{5}{8}}]^{\frac{4}{5}}\\\\=12.11

The covective heat transfer coefficient is given by:

Nu_{cyl}=\frac{hD}{k}

Rewrite and solve for h

h=\frac{Nu_{cyl}\timesk}{D}\\\\=\frac{12.11\times0.03443}{3\times10^{-3}}\\\\=138.98 W/m^{2}.K

The rate of heat transfer from the wire to the air per meter length is determined from the equation is given by:

Q=hA_{s}(T_{s}-T{\infin})\\\\=h\times(\pi\timesDL)\times(T_{s}-T{\infinity})\\\\=138.92\times(\pi\times3\times10^{-3}\times1)\times(280-20)\\\\=340.42W/m

The rate of heat transfer from the wire to the air per meter length is Q=340.42W/m

6 0
3 years ago
Determine the depreciation expense for 2018 and 2019 using the following​ methods: (a)​ Straight-line (SL),​ (b) Units of produc
prohojiy [21]

Answer:

Check Explanation.

Explanation:

(1). The straight-line method: the general clue with this method is that in the two years, depreciation is the same. The formula for Calculating depreciation is given below;

straight-line method = (cost - Residual value)/ useful life in years.

From the question we know that the cost of acquisition is $30,000,000, the residual value of the asset is $4,000,000 and useful life is 7 years. Therefore;

straight-line method = ($30,000,000 - $4,000,000)/ 7.

= $3, 714,285.71 Per year.

That is $3, 714,285.71 for 2018 and 2019.

(2).Units of production​ (UOP) = (cost - Residual value)/ useful life in units.

= ($30,000,000 - $4,000,000)/ 4,375, 000.

Units of production​ (UOP) = $6 per mile.

Hence, the depreciation in 2018 = Depreciation per unit × 2018 year usage.

= 6 × 1,100,000 mile.

= $6,600,000.

depreciation in 2019 = Depreciation per unit × 2019 year usage.

= 6 × 1,200,000.

= $7,200,000.

Double-declining-balance​ (DDB)= (cost - accumulated depreciation) × 2 × 1/(useful life years).

Double-declining-balance​ (DDB) = (30,000,000 - 0)× 2 × (1/7).

= $8,571,428.57 depreciation in 2018.

= $8,571,428.6 depreciation in 2018

Double-declining-balance​ (DDB) = (30,000,000 - 8,571,428.57) × 2 × 1/7.

= $6,122,449.00 depreciation in 2019.

====================================================================

Total depreciation for straight-line method(2018 and 2019) = $7,428,571.42.

Total depreciation for Units of production​ (UOP)(2018 and 2019) = $13,800,000.

Total depreciation for Double-declining-balance (DDB)= $ 14,693,877.6.

5 0
3 years ago
While walking across campus one windy day, an engineering student speculates about using an umbrella as a "sail" to propel a bic
makvit [3.9K]

Answer:

Given data:\\While walking across campus one windy day\\Frontal area, \(A=0.3 m ^{2}\)\\Wind speed \(V=24 Km / hr\)\\The drag coefficient \(C_{D, b}=1.2\)\\The combined mass \(m=75 kg\)\\Umbrella diameter, \(D=1.22 m\)\\Velocity of wind \(V=24 \frac{ km }{ hr }\)\\The rolling resistance \(C_{R}=0.75 \%\)

Solution:

Note: Refer the diagram

Basic equation:\\'s law of motion: \(\sum F_{x}=m a_{x}\)\\Lift coefficient, \(C_{L}=\frac{F_{L}}{\frac{1}{2} \rho V^{2} A_{p}}\)\\Drag coefficient, \(C_{D}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A_{p}}\)

From force balance equation:\\\(\sum F_{x}=F_{D}-F_{R}=0\)\\But \(F_{D}=\left(C_{D, \alpha} A_{u}+C_{D, B} A_{b}\right) \frac{1}{2} \rho\left(V_{\nu}-V_{b}\right)^{2}\)\(F_{R}=C_{R} m g\)\\Area of the Umbrella \(A_{u}=\frac{\pi D_{u}^{2}}{4}\)\(A_{x}=\frac{\pi \times 1.22^{2}}{4} m ^{2}\)\(A_{v}=1.17 m ^{2}\)

Drag coefficient data for selected objects table at

Hemisphere (open end facing flow), C_{D, x}=1.42

Substituting all parameters,

\begin{aligned}&F_{R}=0.0075 \times 75 \times 9.81\\&F_{R}=5.52 N\end{aligned}

Then,

\begin{aligned}&V_{b}=V_{w}-\left[\frac{2 F_{R}}{\rho\left(C_{D, w} A_{w}+C_{D, B} A_{b}\right)}\right]^{\frac{1}{2}} \dots\\&V_{w}=24 \times 1000 \times \frac{1}{3600}\\&V_{w}=6.67 \frac{ m }{ s }\end{aligned}

And the equation becomes,

\begin{aligned}&V_{b}=6.67-\left[\frac{2 \times 5.52}{1.23(1.42 \times 1.17+1.2 \times 0.3)}\right]^{\frac{1}{2}}\\&V_{b}=6.67-2.11\\&V_{b}=4.56 \frac{ m }{ s }\end{aligned}

Thus the floyds travels at 68.3^{\circ}wind speed.

7 0
4 years ago
Name the variable in this experiment
taurus [48]
You have to show the story or experiment so we know
7 0
3 years ago
Air enters the compressor of a regenerative gas-turbine engine at 300 K and 100 kPa, where it is compressed to 800 kPa and 580 K
Bad White [126]

Answer:

a) The amount of heat transfer in the regenerator, q = 114.12 kJ/kg

b) Thermal efficiency = 35.9%

Explanation:

The calculations are neatly handwritten and attached as files to this solution for easiness of expression and clarity. The cycle is also drawn on the T - S diagram and included in the attached files. Check the files below for the complete calculation.

I hope this helps!

3 0
3 years ago
Other questions:
  • Identify the five protective factors
    10·2 answers
  • Which option identifies the technology that controlled flooding in the following scenario? The Nile River in Egypt floods its ba
    15·2 answers
  • Which one of the following statements belt batter boards is correct
    15·2 answers
  • Can you help me? I need solution of this question.
    15·1 answer
  • What are some goals of NYFEA? Select three options.
    9·2 answers
  • A magnesium–lead alloy of mass 7.5 kg consists of a solid α phase that has a composition just slightly below the solubility limi
    10·1 answer
  • What is a combination circuit? A combination circuit:
    6·1 answer
  • At what distance from the Earth’s surface is a 10,000 kg satellite if its potential energy is equal to –5.58 x 1011 J? (choose t
    5·1 answer
  • 25 pts!!!
    12·1 answer
  • Who wants to do a zoom
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!