The answer is: 231.25 ppm.
To solve this, compute first the percentage of hydrogen in the 3.2 g air sample. % = (0.00074g/3.2g)*100 = 0.023125%
1% = 10,000ppm <--- use this as conversion factor.
0.023125%(10,000ppm/1%) = 231.25 ppm
Answer:
V₁ = 96.2 mL
Explanation:
Given data:
Initial volume of NH₄OH required = ?
Initial molarity = 15.6 M
Final molarity = 3.00 M
Final volume = 500.0 mL
Solution:
Formula:
M₁V₁ = M₂V₂
M₁ = Initial molarity
V₁ = Initial volume of NH₄OH
M₂ =Final molarity
V₂ = Final volume
Now we will put the values.
15.6 M ×V₁ = 3.00 M×500.0 mL
15.6 M ×V₁ = 1500 M.mL
V₁ = 1500 M.mL /15.6 M
V₁ = 96.2 mL
Chlorine will have the slowest rate of diffusion because it has the highest relative molecular mass of 71 followed by O₂ with 32, then Neon 20 then He with 2
The rate of diffusion of a gas is inversely proportional to the square root of its relative molecular mass.