Explanation:
Al(OH)4-(aq) plus 4H plus (aq) and Al3 plus (aq) plus 4H20(I)
The mass of ammonium chloride that must be added is : ( A ) 4.7 g
<u>Given data :</u>
Volume of water ( V ) = 250 mL = 0.25 L
pH of solution = 4.85
Kb = 1.8 * 10⁻⁵
Kw = 10⁻¹⁴
Given that the dissolution of NH₄Cl gives NH₄⁺⁺ and Cl⁻ ions the equation is written as :
NH₄CI + H₂O ⇄ NH₃ + H₃O⁺
where conc of H₃O⁺
[ H₃O⁺ ] = and Ka = Kw / Kb
∴ Ka = 5.56 * 10⁻¹⁰
Next step : Determine the concentration of H₃O⁺ in the solution
pH = - log [ H₃O⁺ ] = 4.85
∴ [ H₃O⁺ ] in the solution = 1.14125 * 10⁻⁵
Next step : Determine the concentration of NH₄CI in the solution
C = [ H₃O⁺ ]² / Ka
= ( 1.14125 * 10⁻⁵ )² / 5.56 * 10⁻¹⁰
= 0.359 mol / L
Determine the number of moles of NH₄CI in the solution
n = C . V
= 0.359 mol / L * 0.25 L = 0.08979 mole
Final step : determine the mass of ammonium chloride that must be added to 250 mL
mass = n * molar mass
= 0.08979 * 53.5 g/mol
= 4.80 g ≈ 4.7 grams
Therefore we can conclude that the mass of ammonium chloride that must be added is 4.7 g
Learn more about ammonium chloride : brainly.com/question/13050932
Answer:
b) coefficient
Explanation:
Refer to this example:
CH4 +2 O2 → CO2+ 2 H2O
2 is used as a coefficient in this chemical equation.
Magma in quiet eruptions has a low content in silica , while in explosive eruptions, it has a high Content in silica. A volcano that erupts quietly has magma that is low in silica. Low-silica magma has low viscosity and flows easily. A volcano that erupts explosively has magma that is high in silica. High-silica magma has high viscosity, making it thick and sticky, thus it flows slowly.
If the forward reaction goes close to completion and has a high yield, that means the concentration of products will be higher than the concentration of reactants.
<span>So if the concentration of products is higher, Kc (equilibrium constant) will be greater than 1.
</span><span>
Recall the calculation for the equilibrium constant for reaction. Picture below might help you.</span>