Answer:
Shawn's speed relative to Susan's speed = 10 mph
Resultant velocity = 82.32 mph
Explanation:
The given data :-
i) Susan driving in north and speed of Susan is ( v₁ ) = 53 mph.
ii) Shawn driving in east and speed of Shawn is ( v₂ ) = 63 mph.
iii) The speed of both Susan and Shawn is relative to earth.
iv) The angle between Susan in north and Shawn in east is 90°.
We have to find Shawn's speed relative to Susan's speed.
v₂₁ = v₂ - v₁ = 63 - 53 = 10 mph
Resultant velocity,

v = 82.32 mph
Answer:
a) 
b) 
c) 
d) 
Explanation:
<u>Given equation of pressure variation:</u>
![\Delta P= (1.78\ Pa)\ sin\ [(0.888\ m^{-1})x-(500\ s^{-1})t]](https://tex.z-dn.net/?f=%5CDelta%20P%3D%20%281.78%5C%20Pa%29%5C%20sin%5C%20%5B%280.888%5C%20m%5E%7B-1%7D%29x-%28500%5C%20s%5E%7B-1%7D%29t%5D)
We have the standard equation of periodic oscillations:

<em>By comparing, we deduce:</em>
(a)
amplitude:

(b)
angular frequency:


∴Frequency of oscillations:


(c)
wavelength is given by:



(d)
Speed of the wave is gives by:



Answer: T= 715 N
Explanation:
The only external force (neglecting gravity) acting on the swinging mass, is the centripetal force, which. in this case, is represented by the tension in the string, so we can say:
T = mv² / r
At the moment that the mass be released, it wil continue moving in a straight line at the same tangential speed that it had just an instant before, which is the same speed included in the centripetal force expression.
So the kinetic energy will be the following:
K = 1/2 m v² = 15. 0 J
Solving for v², and replacing in the expression for T:
T = 1.9 Kg (3.97)² m²/s² / 0.042 m = 715 N
Answer:
Explanation:
Waves involve the transport of energy without the transport of matter. In conclusion, a wave can be described as a disturbance that travels through a medium, transporting energy from one location (its source) to another location without transporting matter.