Answer:
The light bends away from the normal
Explanation:
We can solve the problem by using Snell's law:

where:
is the index of refraction of the first medium
is the index of refraction of the second medium
is the angle of incidence (angle between the incoming ray and the normal to the interface)
is the angle of refraction (angle between the outcoming ray and the normal to the interface)
We can rearrange the equation as

In this problem, light travels from an optically denser medium to an optically rarer medium, so

Therefore, the term
is greater than 1, so

which means that the angle of refraction is greater than the angle of incidence, and so the light will bend away from the normal.
Answer:Waves shape the earths surface because they change the form of the coastal land form, meaning that when a wave is formed and moves they are also moving sand and rocks which can change the shape of the surface
Explanation:
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
Answer:
Mass = 18.0 kg
Explanation:
From Hooke's law,
F = ke
where: F is the force, k is the spring constant and e is the extension.
But, F = mg
So that,
mg = ke
On the Earth, let the gravitational force be 10 m/
.
3.0 x 10 = k x 5.0
30 = 5k
⇒ k =
................ 1
On the Moon, the gravitational force is
of that on the Earth.
m x
= k x 5.0
= 5k
⇒ k =
............. 2
Equating 1 and 2, we have;
= 
m = 
= 18.0
m = 18.0 kg
The mass required to produce the same extension on the Moon is 18 kg.
Answer: A is your best answer.
Explanation:
It should be A because the when the ball bounces on the ground the ground will give it force to bounce again but also it wont go as high as it first did. Hope this helps:))