Answer:
The answer is "$238".
Step-by-step explanation:
Current worth![= \$ 17,000](https://tex.z-dn.net/?f=%3D%20%5C%24%2017%2C000)
depreciates by
in 3 years.
time= 19 years
depreciates rate=?
Using formula:
![\to \text{Worth= Current worth}(1- \frac{\text{depreciates rate}}{100})^{time}](https://tex.z-dn.net/?f=%5Cto%20%5Ctext%7BWorth%3D%20%20Current%20worth%7D%281-%20%5Cfrac%7B%5Ctext%7Bdepreciates%20rate%7D%7D%7B100%7D%29%5E%7Btime%7D)
![\to A_t=A_0(1-\frac{r}{100})^t](https://tex.z-dn.net/?f=%5Cto%20A_t%3DA_0%281-%5Cfrac%7Br%7D%7B100%7D%29%5Et)
calculates depreciate value in 3 year ![= \frac{1}{2} \times 17,000](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%2017%2C000)
![= 8,500](https://tex.z-dn.net/?f=%3D%208%2C500)
so,
![A_t=8,500\\\\A_0=17,000\\\\t=3\ years](https://tex.z-dn.net/?f=A_t%3D8%2C500%5C%5C%5C%5CA_0%3D17%2C000%5C%5C%5C%5Ct%3D3%5C%20years)
![\to A_t=A_0(1-\frac{r}{100})^t\\\\\to 8,500= 17,000(1-\frac{r}{100})^3\\\\\to \frac{8,500}{17,000}= (1-\frac{r}{100})^3\\\\\to \frac{1}{2}= (1-\frac{r}{100})^3\\\\\to (\frac{1}{2})^{\frac{1}{3}}= (1-\frac{r}{100})\\\\\to 0.793700526 = (1-\frac{r}{100})\\\\\to \frac{r}{100} = (1-0.793700526)\\\\\to \frac{r}{100} = (1-0.8)\\\\\to r= 0.2 \times 100 \\\\\to r= 20 \%](https://tex.z-dn.net/?f=%5Cto%20A_t%3DA_0%281-%5Cfrac%7Br%7D%7B100%7D%29%5Et%5C%5C%5C%5C%5Cto%208%2C500%3D%2017%2C000%281-%5Cfrac%7Br%7D%7B100%7D%29%5E3%5C%5C%5C%5C%5Cto%20%5Cfrac%7B8%2C500%7D%7B17%2C000%7D%3D%20%281-%5Cfrac%7Br%7D%7B100%7D%29%5E3%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1%7D%7B2%7D%3D%20%281-%5Cfrac%7Br%7D%7B100%7D%29%5E3%5C%5C%5C%5C%5Cto%20%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D%20%281-%5Cfrac%7Br%7D%7B100%7D%29%5C%5C%5C%5C%5Cto%200.793700526%20%3D%20%281-%5Cfrac%7Br%7D%7B100%7D%29%5C%5C%5C%5C%5Cto%20%5Cfrac%7Br%7D%7B100%7D%20%3D%20%281-0.793700526%29%5C%5C%5C%5C%5Cto%20%5Cfrac%7Br%7D%7B100%7D%20%3D%20%281-0.8%29%5C%5C%5C%5C%5Cto%20r%3D%200.2%20%5Ctimes%20100%20%5C%5C%5C%5C%5Cto%20r%3D%2020%20%5C%25)
depreciates rate= 20%
![\to \text{Worth= Current worth}(1- \frac{\text{depreciates rate}}{100})^{time}](https://tex.z-dn.net/?f=%5Cto%20%5Ctext%7BWorth%3D%20%20Current%20worth%7D%281-%20%5Cfrac%7B%5Ctext%7Bdepreciates%20rate%7D%7D%7B100%7D%29%5E%7Btime%7D)
![= \$ 17,000 (1- \frac{20}{100})^{19}\\\\= \$ 17,000 (1-0.2)^{19}\\\\= \$ 17,000 (0.8)^{19}\\\\= \$ 17,000 \times 0.014\\\\= \$ 238](https://tex.z-dn.net/?f=%3D%20%5C%24%2017%2C000%20%281-%20%5Cfrac%7B20%7D%7B100%7D%29%5E%7B19%7D%5C%5C%5C%5C%3D%20%5C%24%2017%2C000%20%281-0.2%29%5E%7B19%7D%5C%5C%5C%5C%3D%20%5C%24%2017%2C000%20%280.8%29%5E%7B19%7D%5C%5C%5C%5C%3D%20%5C%24%2017%2C000%20%5Ctimes%200.014%5C%5C%5C%5C%3D%20%5C%24%20238)
<em>Greetings from Brasil...</em>
The average for a set of 9 elements will be
(A + B + C + D + E + F + G + H + I) ÷ 9 = 20
Let's make (A + B + C + D + E + F + G + H + I) like S
<em>(I chose S to remember a sum)</em>
Let us think.....
S ÷ 9 = 20
S = 20 × 9
S = 180
So, (A + B + C + D + E + F + G + H + I) = 180
According to the statement, we will include a number (element J) in the sum to obtain a mean of (20 - 4), that is:
<h3>(A + B + C + D + E + F + G + H + I +
J) ÷ 10 = (20 - 4)</h3>
as seen above, (A + B + C + D + E + F + G + H + I) = 180, then
(180 + J) ÷ 10 = 16
(180 + J) = 160
J = 160 - 180
<h2>J = - 20</h2><h2 />
So, including the number - 20 <em>(minus 20)</em> in the original mean we will obtain a new mean whose result will be 16
Answer:
ur answer
and thank u for following me