Answer: V=IR
Explanation: for a series circuit connected to a battery supply, the total emf across the circuit is given as
E = I(R + r) and by expanding, we have that E =IR + It
Where r is the internal resistance of the battery
I is the total current flowing in the circuit
R total load resistance in the circuit.
E is the total emf of the circuit.
The total emf is the sum of 2 separate voltages.
"IR" which is the terminal voltage and "Ir" which is the loss voltage.
The teenila voltage is the voltage flowing in the circuit based on the equivalent resistance of the circuit while the loss voltage is the wasted voltage based on the internal resistance of the battery source.
Answer:
option C (1 and 4)
Explanation:
Like poles repel each other, unlike poles attract each other
The velocity of an electron that has been accelerated through a difference of potential of 100 volts will be 5.93 *
m/s
Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Voltage is the amount of push or pressure that is being applied to the electrons.
By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE=q*V. The energy of the electron in electron-volts is numerically the same as the voltage between the plates.
given
charge of electron = 1.6 ×
C
mass of electron = 9.1 ×
kg
Force in an electric field = q*E
potential energy is stored in the form of work done
potential energy = work done = Force * displacement
= q * (E * d)
= q * (V) = 1.6 ×
* 100
stored potential energy = kinetic energy in electric field
kinetic energy = 1/2 * m * 
= 1/2 * 9.1 ×
* 
equation both the equations
1/2 * 9.1 ×
*
= 1.6 ×
= 0.352 *
m/s
= 35.2 * 
= 5.93 *
m/s
To learn more about kinetic energy in electric field here
brainly.com/question/8666051
#SPJ4
Answer:
955.36 seconds ≈ 16 minutes
Explanation:
Power(P) is the rate of doing work(W)
That is, P = W/t, where t is the time.
multipying both sides with 't' and dividing with 'P', we get: t=W/P
Here, W = 5.35 x 10^10 J and P = 5.6 x 10^7 W ( 1 W = 1 J/s).
Therefore , on dividing W with P, we get 955.36 seconds.
Answer:
No, its not possible for water to dissolve almost anything in the universe.
Explanation:
Solubility of a solute defines the ability of that solute to dissolve in a given solvent. It is defined as the maximum amount of solute dissolved in a solvent at equilibrium. The solution which results from dissolving this maximum amount is called a saturated solution, and one it has been reached, no more solute can be dissolved in it.
Different substances in the universe have diffferent solubilities in water, some very high (soluble) (eg. sugar and salt) and some very low (insoluble) (eg plastics). The substances that are able to form bonds with water (Hydrogen or Ionic) are more soluble than those who are not able to do so.