Answer:
1.196 μm
Explanation:
D = Screen distance = 3 m
= Wavelength = 598 m
y = Distance of first-order bright fringe from the center of the central bright fringe = 4.84 mm
d = Slit distance
![tan\theta=\frac{y}{D}\\\Rightarrow \theta=tan^{-1}{\frac{y}{D}}\\\Rightarrow \theta=tan^{-1}{\frac{4.84\times 10^{-3}}{3}}\\\Rightarrow \theta=0.09243\ ^{\circ}](https://tex.z-dn.net/?f=tan%5Ctheta%3D%5Cfrac%7By%7D%7BD%7D%5C%5C%5CRightarrow%20%5Ctheta%3Dtan%5E%7B-1%7D%7B%5Cfrac%7By%7D%7BD%7D%7D%5C%5C%5CRightarrow%20%5Ctheta%3Dtan%5E%7B-1%7D%7B%5Cfrac%7B4.84%5Ctimes%2010%5E%7B-3%7D%7D%7B3%7D%7D%5C%5C%5CRightarrow%20%5Ctheta%3D0.09243%5C%20%5E%7B%5Ccirc%7D)
![sin\theta=\frac{\lambda}{d}\\\Rightarrow d=\frac{\lambda}{sin\theta}\\\Rightarrow d=\frac{598\times 10^{-9}}{sin0.09243}\\\Rightarrow d=0.00037066\ m](https://tex.z-dn.net/?f=sin%5Ctheta%3D%5Cfrac%7B%5Clambda%7D%7Bd%7D%5C%5C%5CRightarrow%20d%3D%5Cfrac%7B%5Clambda%7D%7Bsin%5Ctheta%7D%5C%5C%5CRightarrow%20d%3D%5Cfrac%7B598%5Ctimes%2010%5E%7B-9%7D%7D%7Bsin0.09243%7D%5C%5C%5CRightarrow%20d%3D0.00037066%5C%20m)
For first dark fringe
![dsin\theta=\frac{\lambda'}{2}\\\Rightarrow \lambda'=2dsin\theta\\\Rightarrow \lambda'=2\times 0.00037066\times sin0.09243\\\Rightarrow \lambda'=1.196\times 10^{-6}\\\Rightarrow \lambda'=1.196\ \mu m](https://tex.z-dn.net/?f=dsin%5Ctheta%3D%5Cfrac%7B%5Clambda%27%7D%7B2%7D%5C%5C%5CRightarrow%20%5Clambda%27%3D2dsin%5Ctheta%5C%5C%5CRightarrow%20%5Clambda%27%3D2%5Ctimes%200.00037066%5Ctimes%20sin0.09243%5C%5C%5CRightarrow%20%5Clambda%27%3D1.196%5Ctimes%2010%5E%7B-6%7D%5C%5C%5CRightarrow%20%5Clambda%27%3D1.196%5C%20%5Cmu%20m)
Wavelength of first-order dark fringe observed at this same point on the screen is 1.196 μm
Answer:
2. the volume of the square are the same
Answer:the force will remain same
Explanation:
because force is equal to the ratio of magnitude and distance
Answer:
The frequency of the photon is
.
Explanation:
Given that,
Energy
We need to calculate the energy
Using relation of energy
![E_{4}-E_{2}=\Delta E](https://tex.z-dn.net/?f=E_%7B4%7D-E_%7B2%7D%3D%5CDelta%20E)
Where,
= energy spacing
![4h\nu-2h\nu=4.07\times10^{-19}](https://tex.z-dn.net/?f=4h%5Cnu-2h%5Cnu%3D4.07%5Ctimes10%5E%7B-19%7D)
![\nu=\dfrac{4.07\times10^{-19}}{2h}](https://tex.z-dn.net/?f=%5Cnu%3D%5Cdfrac%7B4.07%5Ctimes10%5E%7B-19%7D%7D%7B2h%7D)
Put the value of h into the formula
![\nu=\dfrac{4.07\times10^{-19}}{2\times6.63\times10^{-34}}](https://tex.z-dn.net/?f=%5Cnu%3D%5Cdfrac%7B4.07%5Ctimes10%5E%7B-19%7D%7D%7B2%5Ctimes6.63%5Ctimes10%5E%7B-34%7D%7D)
![\nu=3.069\times10^{14}\ Hz](https://tex.z-dn.net/?f=%5Cnu%3D3.069%5Ctimes10%5E%7B14%7D%5C%20Hz)
Hence, The frequency of the photon is
.