Answer:
500 kg
Explanation:
It is given that,
The mass of a open train car, M = 5000 kg
Speed of open train car, V = 22 m/s
A few minutes later, the car’s speed is 20 m/s
We need to find the mass of water collected in the car. It is based on the conservation of momentum as follows :
initial momentum = final momentum
Let m is final mass
MV=mv

Water collected = After mass of train - before mass of train
= 5500 - 5000
= 500 kg
So, 500 kg of water has collected in the car.
A sphere has reflection symmetry across any plane through its center.
The power of the engine is 320 W.
<u>Explanation:</u>
Power may be defined as the rate of doing work (or) work done per unit time. One unit of energy is used to do the one unit of work.
Power = Work done / Time taken
Given, Force = 80 N, height = 5 m , final velocity = 4 m/s
To calculate the power, we must know the time taken.
To find the time, use the distance and speed formula which is given by
Time = Distance / speed
Here distance = 5 m and speed = 4 m/s
Time = 5 / 4 = 1.25 s.
Now, Power = work done / time
= (F * d) / t = (80 * 5) / 1.25
Power = 320 W.
The standard unit of power is watt (W) which is joule per second.
Givens
=====
V
= 4.00 L
T
= 273oK We're assuming the temperature does not change, just the
pressure.
n
= 0.864 moles
R
= 8.314 joules / mole * oK
P
= ?????
Formula
======
PV
= n*R*T
P
= n*R*T/V
P
= 0.864 * 8.314 * 273 / 4
P
= 490 kpa
You
have to add 1.6 – 0.864 = 0.736 moles of gas.
We
have to assume that the temperature and pressure remain the same when
we add the 0.736 moles of gas. We are now looking for the volume.
PV
= n*R*T
<span>
V
= 0.736 * 8.314 * 273 / 490</span>
V
= 3.41 L Remember this is at about 4 atmospheres so we have to
convert to Standard Pressure.
Total
Volume = 3.41 + 4.00 = 4.41
V1
* P1 = V2 * P2
P1
= 490 kPa
P2
= 101 kPa
V1
= 7.41 L
V2
= ????
<span>
<span>
7.41*
490 = V2 * 101
V2
= 7.41 * 490 / 101
V2
= 35.94 L
</span>
</span>
<span>You
had 4 L now you need 31.94 more.</span>