Do you remember this formula for the distance traveled while accelerated ?
<u>Distance = (initial speed) x (t) plus (1/2) x (acceleration) x (t²)</u>
I think this is exactly what we need for this problem.
initial speed = 20 m/s down
acceleration = 9.81 m/s² down
t = 3.0 seconds
Distance down = (20) x (3) plus (1/2) x (9.81) x (3)²
Distance = (60) plus (4.905) x (9)
Distance = (60) plus (44.145) = 104.145 meters
Choice <em>D)</em> is the closest one.
A tsunami is caused by earthquakes in the ocean. the earthquakes make a big rumble and the big wave travels and may go on the shore and its a called a tsunami hope this helpsBrainliest??
I have to guess it is force
Answer:
It would take approximately 289 hours for the population to double
Explanation:
Recall the expression for the continuous exponential growth of a population:

where N(t) measures the number of individuals, No is the original population, "k" is the percent rate of growth, and "t" is the time elapsed.
In our case, we don't know No (original population, but know that we want it to double in a certain elapsed "t". We also have in mind that the percent rate "k" would be expressed in mathematical form as: 0.0024 (mathematical form of the given percent growth rate).
So we need to solve for "t" in the following equation:

Which can be rounded to about 289 hours