Hey there!
Seems like you're looking for the size and direction to the final velocity of the two cars. To find it, you must solve it like this.
0.4 kg(3 m/s) + 0.8kg(–2 m/s) = 1.2 kg m/s -1.6 kg m/s = –0.4 kg m/s
–0.4 kg m/s = 1.2 kg(v) = (–0.4 kg m/s)/(1.2 kg) = v = –0.33 m/s
So, the cars are traveling at -0.33 m/s in the direction of the second car.
Hope this helps
<em>Tobey</em>
Answer:

at t = 0.001 we have

at t = 0.01

at t = infinity

Explanation:
As we know that they are in series so the voltage across all three will be sum of all individual voltages
so it is given as

now we will have

now we have

So we will have

at t = 0 we have
q = 0

also we know that
at t = 0 i = 0




so we have

at t = 0.001 we have

at t = 0.01

at t = infinity

Answer:
the tension is 18513N
Explanation:
Given that
mass = 1683kg
acceleration = 1.2m/s^2
acceleration due to gravity = 9.8m/s^2
T-mg = ma
T = ma + mg
T = m(a +g)
T = 1683 kg(1.20 m/s2 + 9.8)
T = 1683 (11)
T = 18513N
therefore, the tension is 18513N
Answer:
7
g/cm³
Explanation:
The formula for density is
. Let's apply the formula to the question:
= 7
g/cm³
You can tell because the line bends and the closer it is to horizontal or past horizontal it is more dense