SInce you need 1.5 feet of overhang, add 3 feet to each axis dimension 1.5 on each side):
Minor Axis = 18 + 3 = 21 feet
Major axis = 25 + 3 = 28 feet
The area of an ellipse is found by multiplying half the minor axis by half the major axis by PI.
1/2 minor axis = 21 / 2 = 10.5
1/2 major axis = 28 / 2 = 14
Using 3.14 for PI
Area = 10.5 x 14 x 3.14 = 147 x 3.14 = 461.6 sq ft
K so its an equation 546 x
over = over
840 100
when u do cross multiplication it will be 840x=546 * 100
x is about 64%
Hope this is helpful
Answer:
165
Step-by-step explanation:
210/3=70
110/2=55
70×11=770
55*11=605
770-605= 165
y would be 165 greater in the table than on the graph when x=11
Answer:
angle is 45° which is constant
Step-by-step explanation:
We use formula for two vectors <u>a </u>and <u>b</u> to calculate angle θ between them by formula
cos θ = <u>a .</u> <u>b</u> / magnitude of <u>a </u> × magnitude of <u>b</u>
<u>Please see the attached file</u>
Suppose that equation of parabola is
y =ax² + bx + c
Since parabola passes through the point (2,−15) then
−15 = 4a + 2b + c
Since parabola passes through the point (-5,-29), then
−29 = 25a − 5b + c
Since parabola passes through the point (−3,−5), then
−5 = 9a − 3b + c
Thus, we obtained following system:
4a + 2b + c = −15
25a − 5b + c = −29
9a − 3b + c = −5
Solving it we get that
a = −2, b = −4, c = 1
Thus, equation of parabola is
y = −2x²− 4x + 1
____________________
Rewriting in the form of
(x - h)² = 4p(y - k)
i) -2x² - 4x + 1 = y
ii) -3x² - 7x = y - 11
(-3x² and -7x are isolated)
iii) -3x² - 7x - 49/36 = y - 1 - 49/36
(Adding -49/36 to both sides to get perfect square on LHS)
iv) -3(x² + 7/3x + 49/36) = y - 3
(Taking out -3 common from LHS)
v) -3(x + 7/6)² = y - 445/36
vi) (x + 7/6)² = -⅓(y - 445/36)
(Shifting -⅓ to RHS)
vii) (x + 1)² = 4(-1/12)(y - 445/36)
(Rewriting in the form of 4(-1/12) ; This is 4p)
So, after rewriting the equation would be -
(x + 7/6)² = 4(-⅛)(y - 445/36)
__________________
I hope this is what you wanted.
Regards,
Divyanka♪
__________________