Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for
DAC:

⇒ 
Now for the
BAC:

⇒ 
Now, differentiating w.r.t x:
![\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Ctheta%20%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Btan%5E%7B-1%7D%20%5Cfrac%7Bd%20%2B%20h%7D%7Bx%7D%20-%20%20tan%5E%7B-1%7D%20%5Cfrac%7Bd%7D%7Bx%7D%5D)
For maximum angle,
= 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 = 

After solving the above eqn, we get
x = 
The observer should stand at a distance equal to x = 
Answer:
U = -3978.8 J
Explanation:
The work of the gravitational force U just depends of the heigth and is calculated as:
U = -mgh
Where m is the mass, g is the gravitational acceleration and h the alture.
for calculate the alture we will use the following equation:
h = L-Lcos(θ)
Where L is the large of the rope and θ is the angle.
Replacing data:
h = 12.2-12.2cos(58.4)
h = 5.8 m
Finally U is equal to:
U = -70(9.8)(5.8)
U = -3,978.8 J
Answer:
Sorry I don't know the answer .Hope other help you.sorryyyyyyyy
<u>Answer:</u>
Work input = Work output * Work against friction is your answer so C
<u>Explanation:</u>
I hope this helps you :)
You want to draw a free body diagram of the forces on the sled in the horizontal x-direction.
If you visualize the system in an x-y coordinate plane, the force along the x-direction is the angle it makes with the x-axis multiples by the force.
The angle made with the x-axis is cosine of the angle theta.
Please see picture attached.