Resistance = (voltage) / (current)
Resistance = (6.0 v) / (2.0 A)
Resistance = 3.0 ohms
You will use the Pythagorean Theorem to solve it.
c^2 = a^2 + b^2
c^2 = (1.5)^2 + (2)^2
c^2 = 6.25
c = square root of 6.25
c = 2.5
I hope this helps!
ogckcigxxkgxkgxkgxixogxigxixgxgifkcgo
Answer:

Explanation:
<u>Coulomb's Law</u>
The force between two charged particles of charges q1 and q2 separated by a distance d is given by the Coulomb's Law formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
We know both charges are identical, i.e. q1=q2=q. This reduces the formula to:

Since we know the force F=1 N and the distance d=1 m, let's find the common charge of the spheres solving for q:

Substituting values:


This charge corresponds to a number of electrons given by the elementary charge of the electron:

Thus, the charge of any of the spheres is:


Einstein's special theory of relativity explains that the electric and magnetic fields are both can formulate together in mathematically.
It is given Einstein's special theory of relativity.
It is find the Einstein's special theory of relativity explains the perpendicular behavior of moving charges without recourse to invoking the concept of a magnetic field.
<h2>What is Einstein's special theory of
relativity?</h2>
As we know that one charge creates a field and its that field that actually exerts a force on the other charge. Here we it gives the relationship of two fields like electric field and magnetic field and gives the formula for electromagnetic objects.
Special relativity fixes the problem by the points that the magnetic force in one frame of reference easily be an electric force in other and also some of the combination of them in a frame.
Thus, Einstein's special theory of relativity explains that the electric and magnetic fields are both can formulae together in mathematically.
Learn more about magnetic field here:
brainly.com/question/23096032
#SPJ4