Answer:
I_weight = M L²
this value is much larger and with it it is easier to restore balance.I
Explanation:
When man walks a tightrope, he carries a linear velocity, this velocity is related to the angular velocity by
v = w r
For man to maintain equilibrium needs the total moment to be zero
∑τ = I α
S τ = 0
The forces on the home are the weight of the masses, the weight of the man and the support on the rope, the latter two are zero taque the distance to the center of rotation is zero.
Therefore the moment of the masses and the open is the one that must be zero.
If the man carries only the bar, we could approximate it by two open one on each side of the axis of rotation formed by the free of the rope
I = ⅓ m L² / 4
As the length of half the length of the bar and the mass of the bar is small, this moment is small, therefore at the moment if there is some imbalance it is difficult to recover.
If, in addition to the opening, each of them carries a specific weight, the moment of inertia of this weight is
I_weight = M L²
this value is much larger and with it it is easier to restore balance.
Answer:
True
Explanation:
A crowbar makes our work easier by multiply effort because it belongs to first class lever.
And first class lever makes work easier by multiplying the effort
You have to solve this by using the equations of motion:
u=3
v=0
s=2.5
a=?
v^2=u^2+2as
0=9+5s
Giving a=-1.8m/s^2
Then using the equation:
F=ma
F is the frictional force as there is no other force acting and its negative as its in the opposite direction to the direction of motion.
-F=25(-1.8)
F=45N
Then use the formula:
F=uR
Where u is the coefficient of friction, R is the normal force and F is the frictional force.
45=u(25g)
45=u(25*10)
Therefore, the coefficient of friction is 0.18
Hope that helps
Answer:
you change the direction of the magnetic field.
Explanation:
Because the magnetic field created by the electric current in the wire is changing directions around the wire, it will repel both poles of the magnet by bending away from the wire.