1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalka [10]
4 years ago
9

In a road-paving process, asphalt mix is delivered to the hopper of the paver by trucks that haul the material from the batching

plant. The article "Modeling of Simultaneously Continuous and Stochastic Construction Activities for Simulation" (J. of Construction Engr. and Mgmnt., 2013: 1037-1045) proposed a normal distribution with mean value 8.46 min and standard deviation .913 min for the rv X 5 truck haul time.a. What is the probability that haul time will be at least 10 min? Will exceed 10 min?b. What is the probability that haul time will exceed 15 min?c. What is the probability that haul time will be between 8 and 10 min?d. What value c is such that 98% of all haul times are in the interval from 8.46 2 c to 8.46 1 c?e. If four haul times are independently selected, what is the probability that at least one of them exceeds 10 min?
Mathematics
1 answer:
Advocard [28]4 years ago
7 0

Answer:

a) Probability that haul time will be at least 10 min = P(X ≥ 10) ≈ P(X > 10) = 0.0455

b) Probability that haul time be exceed 15 min = P(X > 15) = 0.000

c) Probability that haul time will be between 8 and 10 min = P(8 < X < 10) = 0.6460

d) The value of c is such that 98% of all haul times are in the interval from (8.46 - c) to (8.46 + c)

c = 2.12

e) If four haul times are independently selected, the probability that at least one of them exceeds 10 min = 0.1700

Step-by-step explanation:

This is a normal distribution problem with

Mean = μ = 8.46 min

Standard deviation = σ = 0.913 min

a) Probability that haul time will be at least 10 min = P(X ≥ 10)

We first normalize/standardize 10 minutes

The standardized score for any value is the value minus the mean then divided by the standard deviation.

z = (x - μ)/σ = (10 - 8.46)/0.913 = 1.69

To determine the required probability

P(X ≥ 10) = P(z ≥ 1.69)

We'll use data from the normal distribution table for these probabilities

P(X ≥ 10) = P(z ≥ 1.69) = 1 - (z < 1.69)

= 1 - 0.95449 = 0.04551

The probability that the haul time will exceed 10 min is approximately the same as the probability that the haul time will be at least 10 mins = 0.0455

b) Probability that haul time will exceed 15 min = P(X > 15)

We first normalize 15 minutes.

z = (x - μ)/σ = (15 - 8.46)/0.913 = 7.16

To determine the required probability

P(X > 15) = P(z > 7.16)

We'll use data from the normal distribution table for these probabilities

P(X > 15) = P(z > 7.16) = 1 - (z ≤ 7.16)

= 1 - 1.000 = 0.000

c) Probability that haul time will be between 8 and 10 min = P(8 < X < 10)

We normalize or standardize 8 and 10 minutes

For 8 minutes

z = (x - μ)/σ = (8 - 8.46)/0.913 = -0.50

For 10 minutes

z = (x - μ)/σ = (10 - 8.46)/0.913 = 1.69

The required probability

P(8 < X < 10) = P(-0.50 < z < 1.69)

We'll use data from the normal distribution table for these probabilities

P(8 < X < 10) = P(-0.50 < z < 1.69)

= P(z < 1.69) - P(z < -0.50)

= 0.95449 - 0.30854

= 0.64595 = 0.6460 to 4 d.p.

d) What value c is such that 98% of all haul times are in the interval from (8.46 - c) to (8.46 + c)?

98% of the haul times in the middle of the distribution will have a lower limit greater than only the bottom 1% of the distribution and the upper limit will be lesser than the top 1% of the distribution but greater than 99% of fhe distribution.

Let the lower limit be x'

Let the upper limit be x"

P(x' < X < x") = 0.98

P(X < x') = 0.01

P(X < x") = 0.99

Let the corresponding z-scores for the lower and upper limit be z' and z"

P(X < x') = P(z < z') = 0.01

P(X < x") = P(z < z") = 0.99

Using the normal distribution tables

z' = -2.326

z" = 2.326

z' = (x' - μ)/σ

-2.326 = (x' - 8.46)/0.913

x' = (-2.326×0.913) + 8.46 = -2.123638 + 8.46 = 6.336362 = 6.34

z" = (x" - μ)/σ

2.326 = (x" - 8.46)/0.913

x" = (2.326×0.913) + 8.46 = 2.123638 + 8.46 = 10.583638 = 10.58

Therefore, P(6.34 < X < 10.58) = 98%

8.46 - c = 6.34

8.46 + c = 10.58

c = 2.12

e) If four haul times are independently selected, what is the probability that at least one of them exceeds 10 min?

This is a binomial distribution problem because:

- A binomial experiment is one in which the probability of success doesn't change with every run or number of trials. (4 haul times are independently selected)

- It usually consists of a number of runs/trials with only two possible outcomes, a success or a failure. (Only 4 haul times are selected)

- The outcome of each trial/run of a binomial experiment is independent of one another. (The probability that each haul time exceeds 10 minutes = 0.0455)

Probability that at least one of them exceeds 10 mins = P(X ≥ 1)

= P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

= 1 - P(X = 0)

Binomial distribution function is represented by

P(X = x) = ⁿCₓ pˣ qⁿ⁻ˣ

n = total number of sample spaces = 4 haul times are independently selected

x = Number of successes required = 0

p = probability of success = probability that each haul time exceeds 10 minutes = 0.0455

q = probability of failure = probability that each haul time does NOT exceeds 10 minutes = 1 - p = 1 - 0.0455 = 0.9545

P(X = 0) = ⁴C₀ (0.0455)⁰ (0.9545)⁴⁻⁰ = 0.83004900044

P(X ≥ 1) = 1 - P(X = 0)

= 1 - 0.83004900044 = 0.16995099956 = 0.1700

Hope this Helps!!!

You might be interested in
Which fraction is greater than the fraction represented by the model?
babunello [35]

Answer:

7/16

Step-by-step explanation:

7/16>3/8

4 0
3 years ago
Read 2 more answers
You are given that 3y = 5x write y in terms of x
ANEK [815]
10 good reasons why lying can b helpful
7 0
3 years ago
Read 2 more answers
Please help i’ll mark u brainliest
Fantom [35]
0 19 50 24 that’s as far as I could get
5 0
3 years ago
Read 2 more answers
Name the relationship: complementary, or supplementary.
statuscvo [17]

Answer:

See below.

Step-by-step explanation:

1. a and b are supplementary ( they add up to 180 degrees as they are on a straight line).

2,3 and 4 are complementary as in each case a + b = 90 degrees.

8 0
3 years ago
Read 2 more answers
Generalize the pattern by finding the nth term. 6, 10, 14, 18, 22, ... options: A. 4n B. 4n + 2 C. 4n + 10 D. 6n + 4
elixir [45]

ANSWER

B.

4n + 2

EXPLANATION

The given pattern is:

6, 10, 14, 18, 22, ...

The first term if the pattern is a=6.

The common difference among the terms is

d = 10 - 6 = 4

The general pattern can be found using the formula:

f(n)=a+d(n-1)

We substitute the values to get,

f(n)=6+4(n-1)

Expand to get;

f(n)=6+4n-4

f(n) = 4n + 2

The correct answer is B.

7 0
3 years ago
Other questions:
  • there are 78 tourists going on a sightseeing trip.the tour company's buses hold 12 people each how many buses will they need?
    7·2 answers
  • What is the distance between the points (5, −2) and (−9, −2)?
    10·2 answers
  • What decimal is equivalent to - 60\22
    8·1 answer
  • What is the remainder of 1025 divided by 68
    15·2 answers
  • Please help me I need it.
    14·2 answers
  • What’s the answer?(SOMEONE PLEASE HELP ME)
    9·1 answer
  • What is 3y-13=35 in math
    10·2 answers
  • Rewrite this number in scientific notation 54.8 times 10’3 <br> Look at attachment down bellow
    13·1 answer
  • Solve the following system of equations by substitution<br> 2x – 3y = -1<br> y = x - 1
    11·1 answer
  • All graphs need to have a key, the data (imformation) and a _____?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!