1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalka [10]
3 years ago
9

In a road-paving process, asphalt mix is delivered to the hopper of the paver by trucks that haul the material from the batching

plant. The article "Modeling of Simultaneously Continuous and Stochastic Construction Activities for Simulation" (J. of Construction Engr. and Mgmnt., 2013: 1037-1045) proposed a normal distribution with mean value 8.46 min and standard deviation .913 min for the rv X 5 truck haul time.a. What is the probability that haul time will be at least 10 min? Will exceed 10 min?b. What is the probability that haul time will exceed 15 min?c. What is the probability that haul time will be between 8 and 10 min?d. What value c is such that 98% of all haul times are in the interval from 8.46 2 c to 8.46 1 c?e. If four haul times are independently selected, what is the probability that at least one of them exceeds 10 min?
Mathematics
1 answer:
Advocard [28]3 years ago
7 0

Answer:

a) Probability that haul time will be at least 10 min = P(X ≥ 10) ≈ P(X > 10) = 0.0455

b) Probability that haul time be exceed 15 min = P(X > 15) = 0.000

c) Probability that haul time will be between 8 and 10 min = P(8 < X < 10) = 0.6460

d) The value of c is such that 98% of all haul times are in the interval from (8.46 - c) to (8.46 + c)

c = 2.12

e) If four haul times are independently selected, the probability that at least one of them exceeds 10 min = 0.1700

Step-by-step explanation:

This is a normal distribution problem with

Mean = μ = 8.46 min

Standard deviation = σ = 0.913 min

a) Probability that haul time will be at least 10 min = P(X ≥ 10)

We first normalize/standardize 10 minutes

The standardized score for any value is the value minus the mean then divided by the standard deviation.

z = (x - μ)/σ = (10 - 8.46)/0.913 = 1.69

To determine the required probability

P(X ≥ 10) = P(z ≥ 1.69)

We'll use data from the normal distribution table for these probabilities

P(X ≥ 10) = P(z ≥ 1.69) = 1 - (z < 1.69)

= 1 - 0.95449 = 0.04551

The probability that the haul time will exceed 10 min is approximately the same as the probability that the haul time will be at least 10 mins = 0.0455

b) Probability that haul time will exceed 15 min = P(X > 15)

We first normalize 15 minutes.

z = (x - μ)/σ = (15 - 8.46)/0.913 = 7.16

To determine the required probability

P(X > 15) = P(z > 7.16)

We'll use data from the normal distribution table for these probabilities

P(X > 15) = P(z > 7.16) = 1 - (z ≤ 7.16)

= 1 - 1.000 = 0.000

c) Probability that haul time will be between 8 and 10 min = P(8 < X < 10)

We normalize or standardize 8 and 10 minutes

For 8 minutes

z = (x - μ)/σ = (8 - 8.46)/0.913 = -0.50

For 10 minutes

z = (x - μ)/σ = (10 - 8.46)/0.913 = 1.69

The required probability

P(8 < X < 10) = P(-0.50 < z < 1.69)

We'll use data from the normal distribution table for these probabilities

P(8 < X < 10) = P(-0.50 < z < 1.69)

= P(z < 1.69) - P(z < -0.50)

= 0.95449 - 0.30854

= 0.64595 = 0.6460 to 4 d.p.

d) What value c is such that 98% of all haul times are in the interval from (8.46 - c) to (8.46 + c)?

98% of the haul times in the middle of the distribution will have a lower limit greater than only the bottom 1% of the distribution and the upper limit will be lesser than the top 1% of the distribution but greater than 99% of fhe distribution.

Let the lower limit be x'

Let the upper limit be x"

P(x' < X < x") = 0.98

P(X < x') = 0.01

P(X < x") = 0.99

Let the corresponding z-scores for the lower and upper limit be z' and z"

P(X < x') = P(z < z') = 0.01

P(X < x") = P(z < z") = 0.99

Using the normal distribution tables

z' = -2.326

z" = 2.326

z' = (x' - μ)/σ

-2.326 = (x' - 8.46)/0.913

x' = (-2.326×0.913) + 8.46 = -2.123638 + 8.46 = 6.336362 = 6.34

z" = (x" - μ)/σ

2.326 = (x" - 8.46)/0.913

x" = (2.326×0.913) + 8.46 = 2.123638 + 8.46 = 10.583638 = 10.58

Therefore, P(6.34 < X < 10.58) = 98%

8.46 - c = 6.34

8.46 + c = 10.58

c = 2.12

e) If four haul times are independently selected, what is the probability that at least one of them exceeds 10 min?

This is a binomial distribution problem because:

- A binomial experiment is one in which the probability of success doesn't change with every run or number of trials. (4 haul times are independently selected)

- It usually consists of a number of runs/trials with only two possible outcomes, a success or a failure. (Only 4 haul times are selected)

- The outcome of each trial/run of a binomial experiment is independent of one another. (The probability that each haul time exceeds 10 minutes = 0.0455)

Probability that at least one of them exceeds 10 mins = P(X ≥ 1)

= P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

= 1 - P(X = 0)

Binomial distribution function is represented by

P(X = x) = ⁿCₓ pˣ qⁿ⁻ˣ

n = total number of sample spaces = 4 haul times are independently selected

x = Number of successes required = 0

p = probability of success = probability that each haul time exceeds 10 minutes = 0.0455

q = probability of failure = probability that each haul time does NOT exceeds 10 minutes = 1 - p = 1 - 0.0455 = 0.9545

P(X = 0) = ⁴C₀ (0.0455)⁰ (0.9545)⁴⁻⁰ = 0.83004900044

P(X ≥ 1) = 1 - P(X = 0)

= 1 - 0.83004900044 = 0.16995099956 = 0.1700

Hope this Helps!!!

You might be interested in
3/7 is 42 what is the whole amount
Luda [366]
If 3/7 is equal to 42 then 7/7 (100%) is = 98
7 0
3 years ago
Read 2 more answers
What is the relationship among proportional relationships lines, rates of change, and slope?
sdas [7]
<span><span>
It introduces the relationship between two variables and is called correlation. Proportionality or variation is state of relationship or correlation between two variables It has two types: </span>direct variation or proportion which states both variables are positively correlation. It is when both the variables increase or decrease together. On the contrary, indirect variation or proportion indicates negative relationship or correlation. Elaborately, the opposite of what happens to direct variation. One increases with the other variables, you got it, decreases. This correlations are important to consider because you can determine and identify how two variables relates with one another. Notice x = y (direct), y=1/x (indirect)</span>
3 0
3 years ago
Read 2 more answers
72% and 89% confirm that the mean theses two are scores is 80.5%
german

Answer:

correct. the mean of 72 and 89 is 80?5

Step-by-step explanation:

find the mean to confirm it.

(a+b)/2

72+89= 161

161/2=80.5

3 0
3 years ago
Are all repeating decimals rational numbers
sweet [91]
No not all of them are
8 0
3 years ago
Read 2 more answers
Dale made a scale drawing of a house and its lot. The scale he used was 1 inch: 7 feet. The actual length of the backyard is 35
Kipish [7]

Answer:

5

Step-by-step explanation:

<em>35/7=5 </em>

8 0
3 years ago
Other questions:
  • A cell phone provider offers a plan that costs ​$30 per month plus ​$0.10 per text message sent or received. A comparable plan c
    11·1 answer
  • Jeffrey opened a savings account with $15,000. His annual interest rate is 4.8%, and his interest is compounded quarterly. How m
    12·1 answer
  • How many percents are added every 6 minutes ?
    8·1 answer
  • Which is greater 8.016 or 8.16
    13·2 answers
  • Find two consecutive odd integers whose sum is 111
    6·2 answers
  • . (7.3 × 106)(2.5 × 104) <br> HELP!!
    9·1 answer
  • The screen of Breonna‘s new phone is 2.85 centimeters long. What mixed number represents the length of the phone screen?
    14·1 answer
  • Pease Help. Will mark Brainliest
    5·2 answers
  • Rose walks 2 2/3 km in three-fifths of an hour. If her speed remains unchanged, how many kilometres can she walk in one and thre
    13·1 answer
  • Please solve all 4 questions :) to be given the brainliest
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!