Answer:
2√5 - 3
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Terms/Coefficients
- Expand by FOIL
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
(√5 + 4)(√5 - 2)
<u>Step 2: Simplify</u>
- Expand [FOIL]: (√5)² - 2√5 + 4√5 - 8
- Combine like terms: (√5)² + 2√5 - 8
- Evaluate exponents: 5 + 2√5 - 8
- Combine like terms: 2√5 - 3
We have
(a + b)² = a² + 2ab + b²
so that with a = x² and b = 5, we have
x⁴ + 10x² + 25 = (x² + 5)²
Next, we have
a² - b² = (a - b) (a + b)
so that with a = x and b = √5 i,
x² + 5 = x² - (-5) = (x - √5 i) (x + √5 i)
So, the complete factorization over the complexes is
(x - √5 i)² (x + √5 i)²
Answer:
x=1337/528
Step-by-step explanation:
-314x-214x=-1312-25
-528x=-1337
x=1337/528
Answer:
y=x
Step-by-step explanation:
When y=x, then the line goes up 1 and right 1.